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• SIMT (Single Instruction Multiple Threads)
• All threads in a warp execute the same instruction in parallel

• Divergence
• A conditional branch dependent on thread-local values
• Threads in the warp execute different paths
• Serialized execution of a warp

Divergence in SIMT processors

Image credits: https://devblogs.nvidia.com/inside-volta
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Problem: Serialization of common code

• Divergent Code • Warp Execution
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Hoist

• Move to convergent common ancestor
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Sink

• Move to convergent common successor
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Split

• Move to new convergent join point

• Duplicate conditional branch

• Alternative solution: hoist defs/sink uses
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Operand Renaming

• Insert copy instructions then sink/split 10



Branches

• Flatten branch, then sink/split
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Recursive CSC

entry

b = ... c = ...
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Bottom-Up Traversal Through CDG



Common Loops

• Loop distribution

• Index set splitting
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Given a GPU program, identify and move divergent common code to a 
convergent region using Hoist/Sink/Split such that dependences are 
preserved, and the benefit of code motion is maximized.
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Problem Statement



Algorithm
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Identifying common code: Dynamic Programming
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• Benefit:
• Function Call > Memory Instructions > Math Instructions > Copy Instructions
• Loop nest depth

• Cost:
• Copy Instructions for Operand Renaming
• Increase in register live range and/or stalls with hoist/sink
• Increase in branches, smaller blocks, more barriers with Split

Profitability Heuristics
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CUDA

NVPTX/LLVM

Nvidia Volta V100
20

Experimental Setup



Note: nvprof shows major gains due to reduction in global reads of up to 27% with CSC 

(common address reads/coalesced accesses)

Preliminary Results: Microbenchmarks
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Preliminary Results: Bitonic Sort
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• Legality

• CSE and PRE

• Interprocedural analysis

• Opportunity in automatically parallelized programs

• Profile information for divergence, cost, bottlenecks

Discussion and Future Work
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