7
v
7/

\

7

O\
X
W\
\
N &
N
\

Georgi

Tec
CREATING THE NEXT Sana Damani and Vivek Sarkar

Uitz Habanero Extreme Scale Software Research Lab

Georgia Institute of Technology

Common Subexpression Convergence (CS‘:\
a
3!

\
\
/)

Short paper at LCPC 19, Atlanta, GA

Agenda

* Motivation

« Common Subexpression Convergence Transformations

* Approach

* Preliminary Results and Discussion

EEEEEEEEEEEEEEE

Divergence in SIMT processors

« SIMT (Single Instruction Multiple Threads)
» All threads in a warp execute the same instruction in parallel

« Divergence
« A conditional branch dependent on thread-local values
» Threads in the warp execute different paths
» Serialized execution of a warp

threadldx.x

if (threadIidx.x < 4)

7
Aj; (1) 6 g
B;) 5 =4
, 3 o
} else { 3 =
& 3) 2 S
Yo, (4) 1 &
} 0
4
— 1
Time Georgia
Tech |

Image credits: https://devblogs.nvidia.com/inside-volta e

Problem: Serialization of common code

 Divergent Code

bBis w o

€ = ...
if (threadId % 2) {

a bl ko) /7 common
else {
a = b & c; // common

code

code

* Warp Execution

EEEEEEEEEEEEEEE

0 h!

b = o b=
€C = ...3 G = suad
if (threadId % 2) { a=>b *x c;
a =b % o // common code if (threadId :". 2) {
} else { use a;
a =b * c; // common code } else {
}
use a: }
b 7 L8 vy

* Move to convergent common ancestor
7

Georgia
Tech |

CREATING THE NEXT

C = ..uuy

if (threadId % 2) {

b = 10;

a=>bx* c; // common code
} else {

a=>b * c; // common code
}
use a;

c =

if (threadId ¥ 2) A
b = 10;

¥ alas 1

}

a=>b x c;

use a;

* Move to convergent common successor

8

(EGu:rgﬁzaA
Tech |

CREATING THE NEXT

Split

- ™
™ b = -
b = s c = ...}
c = : if (threadId % 2) {
if (threadld %2y { i
a=>b x ¢c; /7 common code: cannot sink } else {
use a; b = 10;
} else { }
b = 10; a=>b * c;
a=>b * ¢; S/ common code: cannot hoist if (threadId % 2) {
¥ use a;
g } else {
}
\ A

* Move to new convergent join point
» Duplicate conditional branch 9

(Eeu)rgnziﬁ

* Alternative solution: hoist defs/sink uses Tech)

CREATING THE NEXT

Operand Renaming

if (threadId % 2) {
if (threadIld % 2) { : o
ol = e t1 = b;
= L 12 = o3
a=b * ¢ // common code } elss {
} else { o
e = f =
f= ... tl = a;
a=e *x f; // common code €2 = £
p } ,
xusea y a = tl *x t2;
use a
" J
* Insert copy instructions then sink/split 10
Georgia
Tech |

CREATING THE NEXT

Branches

-

b = ' - A
e = iid C = G g
if (threadId % 2) : A ;
a=b % c; /7 common code 1fp(:hz:::]5d A
} else { } else { ’
if (condition) { p = condition;
a=>b % c; // conditional common code } '
) (p) a=Db * c;
} use a,
use a; L 2
s
 Flatten branch, then sink/split)
Georgia

Tech |
CREATING THE NEXT

Recursive CSC

P
b = e
e = ...
if (threadId % 2) {
a=>b x c; S/ common code
} else {
if (threadId % 3) {
a=>b * c; /S common code
} else {
a=>b *x c; S/ common code
}
}
use aj;
L
-
b = i
c = ...
a=>b *x c; /7 common code
if (threadId % 2) {
} else {
if (threadId % 3) {
} else A
}
}
use aj;

tid%2

tid%3

Bottom-Up Traversal Through CDG
12

Georgia
Tech |

CREATING THE NEXT

Common Loops

-~

b =
g =Ty,
if (threadId % 2} {
while (condition) {
a=">b x ¢c; /S common code
1
} else {
while (condition) {
a=b>b * c; S/ common code
}
}
use a;
L.

* Loop distribution
* Index set splitting

13

(EGmnrgﬁzaA
Tech |

CREATING THE NEXT

Given a GPU program, identify and move divergent common code to a
convergent region using Hoist/Sink/Split such that dependences are
preserved, and the benefit of code motion is maximized.

Algorithm

Algorithm 1 CSC

1: for (each region in a bottom-up traversal) do
2 for each divergent branch do

3: identify profitable common code:

4 Hoist /Sink /Split;

5 end for

6: end for

16

£ - |
Georgia ||

Tech ||

Identifying common code: Dynamic Programming

if (condition) { a = b * c; = a + c; =d * d; }
{ a=»b * c; = a J c: =f = £: }
e e
If@\ ;@"n,
' ' f |
d | .

|'/I-l - a®;l|i
.r@“x |
/ |
® (&

Expression DAG for Taken Path

Expression DAG for Mot Taken Path

17

Georgia
Tech |

EEEEEEEEEEEEEEE

Profitability Heuristics

» Benefit:
* Function Call > Memory Instructions > Math Instructions > Copy Instructions
* Loop nest depth

e Cost:

» Copy Instructions for Operand Renaming
* Increase in register live range and/or stalls with hoist/sink
 Increase in branches, smaller blocks, more barriers with Split

EEEEEEEEEEEEEEE

CUDA
NVPTX/LLVM
Nvidia Volta V100

Preliminary Results: Microbenchmarks

SIMT efficiency

120%

100%
80%
60%
40%
20%
0% -

Hoist Sink Split Function Nested Switch

>

>

= SIMT efficiency Before ~ m SIMT efficiency After

Note: nvprof shows major gains due to reduction in global reads of up to 27% with CSC

(common address reads/coalesced accesses)

12

10

Hoist

Speedup

Sink

m Speedup

Split

Switch

21

Georgia
Tech |

CREATING THE NEXT

Preliminary Results: Bitonic Sort

}

if ((ikk)=

=0) {

if (dev_values[i]>dev_values[ixj])

float temp = dev_values|[i];
dev_values[i] = dev_values[ix]j]:
dev_values[ixj] = temp;

}

if ((i&k)!=0) {

if (dev_values[i]<dev_values[ix]j])

float temp = dev_values|[i];
dev_values[i] = dev_values[ixj];
dev_values|[ixj]| = temp;

{

{

500
450
400
350
300
250
200
150
100

Run Time for Bitonic Sort

min run time max run time avg run time

mbefore mafter

120.00%

100.00%

80.00%

60.00%

40.00%

20.00%

0.00%

SIMT Efficiency for Bitonic Sort

min eff max eff avg eff Gie ol

rgia
gh@

mbefore mafter
CREATING]

THE NEXT

Discussion and Future Work

 Legality

« CSE and PRE

* Interprocedural analysis

« Opportunity in automatically parallelized programs

* Profile information for divergence, cost, bottlenecks

EEEEEEEEEEEEEEE

