
Sana Damani and Vivek Sarkar

Habanero Extreme Scale Software Research Lab

Georgia Institute of Technology

Common Subexpression Convergence (CSC)

Short paper at LCPC ’19, Atlanta, GA



• Motivation

• Common Subexpression Convergence Transformations

• Approach

• Preliminary Results and Discussion

Agenda

2



3



• SIMT (Single Instruction Multiple Threads)
• All threads in a warp execute the same instruction in parallel

• Divergence
• A conditional branch dependent on thread-local values
• Threads in the warp execute different paths
• Serialized execution of a warp

Divergence in SIMT processors

Image credits: https://devblogs.nvidia.com/inside-volta

4

threadIdx.x

0
1
2
3
4
5
6
7

(1)
(2)

(3)
(4)

(5)



Problem: Serialization of common code

• Divergent Code • Warp Execution

5



6



Hoist

• Move to convergent common ancestor
7



Sink

• Move to convergent common successor
8



Split

• Move to new convergent join point

• Duplicate conditional branch

• Alternative solution: hoist defs/sink uses

9



Operand Renaming

• Insert copy instructions then sink/split 10



Branches

• Flatten branch, then sink/split
11



Recursive CSC

entry

b = ... c = ...

12

tid%2

tid%3 a=b*c

a=b*c a=b*c

F T

F T

Bottom-Up Traversal Through CDG



Common Loops

• Loop distribution

• Index set splitting

13



14



Given a GPU program, identify and move divergent common code to a 
convergent region using Hoist/Sink/Split such that dependences are 
preserved, and the benefit of code motion is maximized.

15

Problem Statement



Algorithm

16



Identifying common code: Dynamic Programming

17



• Benefit:
• Function Call > Memory Instructions > Math Instructions > Copy Instructions
• Loop nest depth

• Cost:
• Copy Instructions for Operand Renaming
• Increase in register live range and/or stalls with hoist/sink
• Increase in branches, smaller blocks, more barriers with Split

Profitability Heuristics

18



19



CUDA

NVPTX/LLVM

Nvidia Volta V100
20

Experimental Setup



Note: nvprof shows major gains due to reduction in global reads of up to 27% with CSC 

(common address reads/coalesced accesses)

Preliminary Results: Microbenchmarks

0%

20%

40%

60%

80%

100%

120%

Hoist Sink Split Function Nested Switch

SIMT efficiency

SIMT efficiency Before SIMT efficiency After

0

2

4

6

8

10

12

Hoist Sink Split Switch

Speedup

Speedup

21



Preliminary Results: Bitonic Sort

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

min eff max eff avg eff

SIMT Efficiency for Bitonic Sort

before after

0

50

100

150

200

250

300

350

400

450

500

min run time max run time avg run time

Run Time for Bitonic Sort

before after

22



• Legality

• CSE and PRE

• Interprocedural analysis

• Opportunity in automatically parallelized programs

• Profile information for divergence, cost, bottlenecks

Discussion and Future Work

23


