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THREAD DIVERGENCE

• SIMT Execution

• Divergent Branch: dependent on thread-local values

• Solution: If-conversion, Serialized execution

• Earliest safe reconvergence point: Branch Post-Dominator
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POST-DOMINATOR RECONVERGENCE
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ALTERNATIVE RECONVERGENCE
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SPECULATIVE RECONVERGENCE

• Observation:

• Diverged threads execute the same code serially instead of in parallel

• Post-dominator reconvergence is not always ideal

• Solution:

• Reconverge threads before executing common code

• Goal:

• Increase convergence within expensive code paths
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CODE PATTERNS
1. Divergent condition inside loop

while (loop condition) {
if (divergent condition) {

Expensive() // converge here
}

}

2. Nested loop with divergent loop trip count

while (loop condition) {
while (divergent condition) {

Expensive() // converge here
}

}

3. Divergently executed common function call

if (divergent condition) {
foo()      // converge within common function

}
else {

foo()      // converge within common function
}

Copyright NVIDIA 2020



7

DIVERGENT CONDITION INSIDE LOOP
Post-Dominator Reconvergence
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while (loop condition) {
if (divergent condition) {

Expensive()
}

}
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DIVERGENT CONDITION INSIDE LOOP
Speculative Reconvergence
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DIVERGENT LOOP TRIP CONDITION
Post-Dominator Reconvergence
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DIVERGENT LOOP TRIP CONDITION
Speculative Reconvergence
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while (loop condition) {
while (divergent condition) {

Expensive()
}

}
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DIVERGENT COMMON FUNCTION CALL
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DIVERGENT COMMON FUNCTION CALL
Speculative Reconvergence
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if (divergent condition) {
foo()

} else {
foo()

}
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DESIGN

Identify opportunity for speculative reconvergence

• User-directed

• Compiler-identified

Compiler inserted reconvergence barriers

• Performance optimization (Forward progress guarantee)

• Forward and backward dataflow analysis to identify insertion points
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IDENTIFY SPECULATIVE RECONVERGENCE POINT
Case Study: RSBench

Copyright NVIDIA 2020

• Monte Carlo neutron transport

• Characteristics:

• Nested divergent loop

• Expensive inner loop

• Inexpensive prolog/epilog

• High divergence
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TRANSFORM OBJECTIVES

• Ensure all participating threads join the reconvergence barrier at region start (JoinBarrier)

• Threads wait for participating threads at the new reconvergence point (WaitBarrier)

• Exiting threads must cancel out of the reconvergence barrier (CancelBarrier)

• Threads that re-enter the region must rejoin the reconvergence barrier (RejoinBarrier)

Synchronization Primitives
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INSERTING SYNCHRONIZATION PRIMITIVES
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Post-Dominator Synchronization

 Region Start

 Speculative Reconvergence Point
Deconfliction

Ensure all participating threads 
join the reconvergence barrier 

at region start

Threads wait for participating threads 
at the new reconvergence point
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Participating threads that re-enter
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EXPERIMENTAL SETUP

• Hardware: Volta GPU (V100)

• Implementation:

• Production GPU compiler

• User-directed and automatically detected opportunities

• Benchmarks: Mini-apps and internal benchmarks (Monte-carlo, ray tracing)

• Metrics: SIMT efficiency (avg threads active per issued instruction), Speedup
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USER-DIRECTED SPECULATIVE RECONVERGENCE

Apps: Monte Carlo, Path tracing

SIMT efficiency improvement: 1.2x to 3.4x 

Speedup: 1.1x to 2.5x

Automatic reconvergence performed 
identically for these apps
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AUTOMATIC SPECULATIVE RECONVERGENCE

Apps: Optix, MayaMD5

SIMT efficiency improvement: 1.2x to 4.7x 

Speedup: 1.4x to 3.75x
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SOFT BARRIER
Threshold Selection

Goal: Wait for enough threads to arrive at reconvergence point instead of all threads.
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DISCUSSION

• Interaction with compiler optimizations:

• Thread coarsening, loop unrolling, interchange, fission and fusion

• If-conversion, function inlining, code refactoring

• Interaction with architectural features:

• Scalar datapaths

• Warp synchronous instructions (e.g. SHFL)
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CONCLUSIONS

• Sometimes, code that could execute in parallel is serialized with PDOM reconvergence

• Reconverge at alternative locations for better SIMT efficiency and performance

• Speculative reconvergence is a sharp-edged tool
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