SPECULATIVE RECONVERGENCE <« |

THREAD DIVERGENCE

SIMT Execution
Divergent Branch: dependent on thread-local values
Solution: If-conversion, Serialized execution

Earliest safe reconvergence point: Branch Post-Dominator
X5 Y;
it (threadIdx.x < 4) {
Aj
B
} else {
X3
Y5

<))
on
=
(b
>
c
(@)
9
(V)
=

N -~

» Time
Copyright NVIDIA 2020 Image credits: https://devblogs.nvidia.com/inside-volta 2 <GAnvioia

POST-DOMINATOR RECONVERGENCE

2

—|

Prolog

2

Divergent
Condition

Expensive()

.

Post-Dominator -

Reconverge

¥

Epilog

Copyright NVIDIA 2020

Iteration 1:

Iteration 2:

Iteration 3:

Iteration 4:

TOT1T2T3

b

b

Expensive()

Expensive()

Expensive()

Expensive()

3

<ANVIDIA.

v

—>

Prolog

v

Divergent
Condition

Epilog

Copyright NVIDIA 2020

ALTERNATIVE RECONVERGENCE

Iteration 1:

Iteration 2:

Iteration 3:

Iteration 4:

TOT1T2T3

b
1

1

|/l

Wait
Wait
Wait

Wait

Expensive()

4

<ANVIDIA.

SPECULATIVE RECONVERGENCE

Observation:
Diverged threads execute the same code serially instead of in parallel
Post-dominator reconvergence is not always ideal

Solution:
Reconverge threads before executing common code

Goal:

Increase convergence within expensive code paths

Copyright NVIDIA 2020

5

<ANVIDIA.

CODE PATTERNS

Divergent condition inside loop

while (loop condition){
if (divergent condition){
Expensivel() /l converge here
}
}

Nested loop with divergent loop trip count

while (loop condition){
while (divergent condition){
Expensive() // converge here
}
}

Divergently executed common function call

if (divergent condition){

foo() //converge within common function
}
else {

foo() //converge within common function

}

Copyright NVIDIA 2020

6

<ANVIDIA.

DIVERGENT CONDITION INSIDE LOOP

Post-Dominator Reconvergence

v

—>

Prolog

v

while (loop condition){
if (divergent condition){
Expensive()

}

Divergent
Condition

Copyright NVIDIA 2020

Iteration 2

Expensive()

Reconverge

A 4

Epilog

\/

!
!

L

7

<ANVIDIA.

DIVERGENT CONDITION INSIDE LOOP

Speculative Reconvergence

while (loop condition){
if (divergent condition){
Expensive()

}

Copyright NVIDIA 2020

v

—> Prolog

v

Divergent
Condition

Iteration 2
v v
v v
\ 4 v

8

<ANVIDIA.

DIVERGENT LOOP TRIP CONDITION

Post-Dominator Reconvergence

Iteration 2: Outer Loop

v v
v
Prolo
9 A\ v
v
Divergent |
while (loop condition){ Condition \ 22
while (divergent condition){ ¥
Expensive())
} Expensive()
v v
}
Reconverge |__
Epilog 4 \ 4

Copyright NVIDIA 2020 9 <AnviDIA

DIVERGENT LOOP TRIP CONDITION

Speculative Reconvergence

Iteration 2: Outer Loop

A\ v
v
Prolo
J v v
v
Divergent |
while (loop condition){ Condition v

while (divergent condition){

Epilog -

v
} Expensive() 1 | >
}
}

Copyright NVIDIA 2020

10 <ANVIDIA.

DIVERGENT COMMON FUNCTION CALL

Post-Dominator Reconvergence

if (divergent condition){

fool)
Yelse{

)

fool)

v

Divergent
Condition

1 foo()

Copyright NVIDIA 2020

b
b

foo()

Reconverge

v

a

foo()
{

}

Expensive()

!

11

<ANVIDIA.

DIVERGENT COMMON FUNCTION CALL

Speculative Reconvergence

v

Divergent

if (divergent condition){
fool)

telse{
fool)

}

Condition

1 foo()

ay
ay

foo() 1 1

Copyright NVIDIA 2020

Reconverge

\/

a

2 <ANVIDIA

DESIGN

Identify opportunity for speculative reconvergence
User-directed

Compiler-identified

Compiler inserted reconvergence barriers
Performance optimization (Forward progress guarantee)

Forward and backward dataflow analysis to identify insertion points

Copyright NVIDIA 2020 13 <InviDia

IDENTIFY SPECULATIVE RECONVERGENCE POINT

Case Study: RSBench

Monte Carlo neutron transport TSR SRR

while (true) {

Prolog:
material = get random material ()
Characteristics: Fradiot(ti)
// num nuclides per material ranges from 4 to 321
Nested divergent [oop for (each nuclide in material) ({
// proposed reconvergence point
Expensive inner loop Ll:

accumulate neutron cross sections ()
Inexpensive prolog/epilog }
// original reconvergence point

High divergence Epilog:
post processing()

Copyright NVIDIA 2020 14 <AnviDia

TRANSFORM OBJECTIVES

Synchronization Primitives

Ensure all participating threads join the reconvergence barrier at region start (JoinBarrier)

Threads wait for participating threads at the new reconvergence point (WaitBarrier)

Exiting threads must cancel out of the reconvergence barrier (CancelBarrier)

Threads that re-enter the region must rejoin the reconvergence barrier (RejoinBarrier)

Copyright NVIDIA 2020 15 <InvIDIA

INSERTING SYNCHRONIZATION PRIMITIVES

jg::g:;;:z:gﬁ; BBO < Region Start
v
BB1
\
> Prolog BB2
JoinBarrier(b0)

WaitBarrier(b1) BB3 < Speculative Reconvergence Point
RejoinBarrier(b1)

M

WaitBarrier(b0)
Epilog

BB4

Y

CancelBarrier(b1) BB5
WaitBarrier(b2)

16 <ANVIDIA.

Copyright NVIDIA 2020 Post-Dominator Synchronization

EXPERIMENTAL SETUP

Hardware: Volta GPU (V100)
Implementation:
Production GPU compiler
User-directed and automatically detected opportunities
Benchmarks: Mini-apps and internal benchmarks (Monte-carlo, ray tracing)

Metrics: SIMT efficiency (avg threads active per issued instruction), Speedup

Copyright NVIDIA 2020 17 <AnviDIA

USER-DIRECTED SPECULATIVE RECONVERGENCE

Apps: Monte Carlo, Path tracing

3
2.9
2 SIMT efficiency improvement: 1.2x to 3.4x
15
1 Speedup: 1.1x to 2.5x
0.5 .
" II I I Automatic reconvergence performed
identically for these apps
&\(\ bé & Q/(\“
By 6‘ &
X (0 N o_} N 5 S
& ¢ & ¢ L
N

m SIMT Efficiency Improvement W Speedup

Copyright NVIDIA 2020 18 <AnviDiA

AUTOMATIC SPECULATIVE RECONVERGENCE

4.5
3.5

2.5

1.5

Optix1 Optix2 Optix3 Optix4 MeiyaMD5
m SIMT efficiency improvement m Speedup

N

—

o

Copyright NVIDIA 2020

Apps: Optix, MayaMD5
SIMT efficiency improvement: 1.2x to 4.7x

Speedup: 1.4x to 3.75x

SOFT BARRIER

Threshold Selection

Goal: Wait for enough threads to arrive at reconvergence point instead of all threads.

e (b) PathTracer - R (a) XsBench 2
90.00% 90.00%
80.00% £ 80.00% 2
70.00% 2 70.00%
60.00% 60.00% 1.5
50.00% 15 50.00%
40.00% 40.00% 1
30.00% 4 30.00%
20.00% 0.5 20.00% 0.5
10.00% 10.00%
0.00% +—H—4—"F—"F+—F—"F+—"F+—"+- 0 0.00% +—H—+—+—+—+—+—+—+-1 0
Threshold 0 4 8 121620242832 Threshold 0 4 8 121620242832
—o=—Speedup (right axis) —a==S|MT efficiency (left axis)

20 <ANVIDIA.

Copyright NVIDIA 2020

DISCUSSION

Interaction with compiler optimizations:

Thread coarsening, loop unrolling, interchange, fission and fusion

If-conversion, function inlining, code refactoring

Interaction with architectural features:

Scalar datapaths

Warp synchronous instructions (e.g. SHFL)

Copyright NVIDIA 2020

21

<ANVIDIA.

CONCLUSIONS

Sometimes, code that could execute in parallel is serialized with PDOM reconvergence
Reconverge at alternative locations for better SIMT efficiency and performance

Speculative reconvergence is a sharp-edged tool

Copyright NVIDIA 2020 22 <AnviDiA

More in common
than we think

e . NVIDIA.

