
Sana Damani, Daniel R. Johnson, Mark Stephenson, Stephen W. Keckler,
Eddie Yan, Michael McKeown and Olivier Giroux

CGO 2020

SPECULATIVE RECONVERGENCE
FOR IMPROVED SIMT EFFICIENCY

2

THREAD DIVERGENCE

• SIMT Execution

• Divergent Branch: dependent on thread-local values

• Solution: If-conversion, Serialized execution

• Earliest safe reconvergence point: Branch Post-Dominator

Copyright NVIDIA 2020 Image credits: https://devblogs.nvidia.com/inside-volta

3

POST-DOMINATOR RECONVERGENCE

Prolog

Divergent
Condition

Reconverge

Expensive()

Epilog

T0 T1 T2 T3

Post-Dominator 

Expensive()

Expensive()

Expensive()

Expensive()

Iteration 1:

Iteration 2:

Iteration 3:

Iteration 4:

Copyright NVIDIA 2020

4

ALTERNATIVE RECONVERGENCE

Prolog

Divergent
Condition

Epilog

Reconverge
Expensive()

T0 T1 T2 T3

Expensive()

WaitIteration 1:

Iteration 2:

Iteration 3:

Iteration 4:

Wait

Wait

Wait

Copyright NVIDIA 2020

5

SPECULATIVE RECONVERGENCE

• Observation:

• Diverged threads execute the same code serially instead of in parallel

• Post-dominator reconvergence is not always ideal

• Solution:

• Reconverge threads before executing common code

• Goal:

• Increase convergence within expensive code paths

Copyright NVIDIA 2020

6

CODE PATTERNS
1. Divergent condition inside loop

while (loop condition) {
if (divergent condition) {

Expensive() // converge here
}

}

2. Nested loop with divergent loop trip count

while (loop condition) {
while (divergent condition) {

Expensive() // converge here
}

}

3. Divergently executed common function call

if (divergent condition) {
foo() // converge within common function

}
else {

foo() // converge within common function
}

Copyright NVIDIA 2020

7

DIVERGENT CONDITION INSIDE LOOP
Post-Dominator Reconvergence

Prolog

Divergent
Condition

Reconverge

Expensive()

Epilog

Iteration 1Iteration 2

Copyright NVIDIA 2020

while (loop condition) {
if (divergent condition) {

Expensive()
}

}

8

DIVERGENT CONDITION INSIDE LOOP
Speculative Reconvergence

Prolog

Divergent
Condition

Reconverge
Expensive()

Epilog

Iteration 1Iteration 2

while (loop condition) {
if (divergent condition) {

Expensive()
}

}

Copyright NVIDIA 2020

9

DIVERGENT LOOP TRIP CONDITION
Post-Dominator Reconvergence

Prolog

Divergent
Condition

Reconverge
Epilog

Expensive()

Iteration 1: Outer LoopIteration 2: Outer Loop

while (loop condition) {
while (divergent condition) {

Expensive()
}

}

Copyright NVIDIA 2020

10

DIVERGENT LOOP TRIP CONDITION
Speculative Reconvergence

Prolog

Divergent
Condition

Epilog

Reconverge
Expensive()

Iteration 1: Outer LoopIteration 2: Outer Loop

Copyright NVIDIA 2020

while (loop condition) {
while (divergent condition) {

Expensive()
}

}

11

DIVERGENT COMMON FUNCTION CALL
Post-Dominator Reconvergence

Divergent
Condition

Reconverge

foo()foo()

foo()
{

Expensive()
}

if (divergent condition) {
foo()

} else {
foo()

}

Copyright NVIDIA 2020

12

DIVERGENT COMMON FUNCTION CALL
Speculative Reconvergence

foo()
{

Reconverge
Expensive()

}

Divergent
Condition

Reconverge

foo()foo()

Copyright NVIDIA 2020

if (divergent condition) {
foo()

} else {
foo()

}

13

DESIGN

Identify opportunity for speculative reconvergence

• User-directed

• Compiler-identified

Compiler inserted reconvergence barriers

• Performance optimization (Forward progress guarantee)

• Forward and backward dataflow analysis to identify insertion points

Copyright NVIDIA 2020

14

IDENTIFY SPECULATIVE RECONVERGENCE POINT
Case Study: RSBench

Copyright NVIDIA 2020

• Monte Carlo neutron transport

• Characteristics:

• Nested divergent loop

• Expensive inner loop

• Inexpensive prolog/epilog

• High divergence

15

TRANSFORM OBJECTIVES

• Ensure all participating threads join the reconvergence barrier at region start (JoinBarrier)

• Threads wait for participating threads at the new reconvergence point (WaitBarrier)

• Exiting threads must cancel out of the reconvergence barrier (CancelBarrier)

• Threads that re-enter the region must rejoin the reconvergence barrier (RejoinBarrier)

Synchronization Primitives

Copyright NVIDIA 2020

16

INSERTING SYNCHRONIZATION PRIMITIVES

Prolog
JoinBarrier(b0)

WaitBarrier(b1)
RejoinBarrier(b1)

WaitBarrier(b0)
Epilog

BB1

BB2

BB3

BB4

CancelBarrier(b1)
WaitBarrier(b2)

JoinBarrier(b2)
JoinBarrier(b1)

BB5

BB0

Post-Dominator Synchronization

 Region Start

 Speculative Reconvergence Point
Deconfliction

Ensure all participating threads
join the reconvergence barrier

at region start

Threads wait for participating threads
at the new reconvergence point

Exiting threads must cancel out of
the reconvergence barrier

Participating threads that re-enter
the region after clearing the reconvergence

barrier must rejoin the barrier
Ensure reconvergence after region end

Copyright NVIDIA 2020

17

EXPERIMENTAL SETUP

• Hardware: Volta GPU (V100)

• Implementation:

• Production GPU compiler

• User-directed and automatically detected opportunities

• Benchmarks: Mini-apps and internal benchmarks (Monte-carlo, ray tracing)

• Metrics: SIMT efficiency (avg threads active per issued instruction), Speedup

Copyright NVIDIA 2020

18

USER-DIRECTED SPECULATIVE RECONVERGENCE

Apps: Monte Carlo, Path tracing

SIMT efficiency improvement: 1.2x to 3.4x

Speedup: 1.1x to 2.5x

Automatic reconvergence performed
identically for these apps

Copyright NVIDIA 2020

19

AUTOMATIC SPECULATIVE RECONVERGENCE

Apps: Optix, MayaMD5

SIMT efficiency improvement: 1.2x to 4.7x

Speedup: 1.4x to 3.75x

Copyright NVIDIA 2020

20

SOFT BARRIER
Threshold Selection

Goal: Wait for enough threads to arrive at reconvergence point instead of all threads.

Copyright NVIDIA 2020

21

DISCUSSION

• Interaction with compiler optimizations:

• Thread coarsening, loop unrolling, interchange, fission and fusion

• If-conversion, function inlining, code refactoring

• Interaction with architectural features:

• Scalar datapaths

• Warp synchronous instructions (e.g. SHFL)

Copyright NVIDIA 2020

22

CONCLUSIONS

• Sometimes, code that could execute in parallel is serialized with PDOM reconvergence

• Reconverge at alternative locations for better SIMT efficiency and performance

• Speculative reconvergence is a sharp-edged tool

Copyright NVIDIA 2020

