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Abstract—Raytracing applications have naturally high
thread divergence, low warp occupancy and are limited by
memory latency. In this paper, we present an architectural
enhancement called Subwarp Interleaving that exploits thread
divergence to hide pipeline stalls in divergent sections of low
warp occupancy workloads. Subwarp Interleaving allows for
fine-grained interleaved execution of diverged paths within a
warp with the goal of increasing hardware utilization and
reducing warp latency. However, notwithstanding the promise
shown by early microbenchmark studies and an average
performance upside of 6.3% (up to 20%) on a simulator
across a suite of raytracing application traces, the Subwarp
Interleaving design feature has shortcomings that preclude its
near-term implementation. This paper introduces the reader
to the challenges of raytracing and discusses a novel micro-
architectural approach that, on paper, addresses many of the
challenges. A thorough analysis of the idea on a production
simulator reveals that the high-level motivating statistics are
optimistic, and second-order effects, along with other architec-
tural sharp edges, limit the idea’s potential. We identify Sub-
warp Interleaving’s primary limiters for an NVIDIA Turing-
like architecture, and we outline the conditions under which
the approach could be more effective.
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I. INTRODUCTION

GPUs have successfully accelerated computer graphics
applications and other suitable workloads by adhering to
two primary design principles. First, GPUs group threads
into units, which we call warps, that fetch from a single
program counter (PC) and execute in SIMT (single instruc-
tion, multiple thread) fashion. Second, GPUs hide stalls by
concurrently scheduling among many active warps [19]. In
this paper, we show that raytracing, which trends suggest is
the future of real-time computer graphics, suffers because
of the following corollaries to those design principles:

1) GPUs lose efficiency when threads in a warp diverge

and therefore do not all share the same PC. GPUs
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serialize execution across divergent threads because
SIMT execution requires that all participating threads
share a PC.

2) GPUs lose efficiency when the scheduler does not have
enough active warps to hide stalls.

Each thread of a traditional raytracing megakernel traces
the path of a ray through a scene, invoking different shader
programs according to whether the ray simulated in a given
thread hits or misses objects in the scene [29].! Such ray-
tracing kernels are latency-sensitive, divergent, and contain
relatively few active warps; these inefficiencies combine
to hinder performance on current GPUs. Researchers have
previously introduced software solutions to mitigate the
problem of divergence [38], [17]. However, in this work,
we describe an architectural approach that improves latency
tolerance by leveraging the divergence inherent in raytracing
to effectively increase the scheduler’s ability to hide stalls.

Figure 1 illustrates warp divergence in the control flow
graph of a raytracing megakernel, where the divergent blocks
labeled Shader A and Shader B contain pedagogical single-
block shader programs. We will show later how raytracing
applications produce control flow of this nature, but for now
notice that after the point labeled @, a warp of threads splits
into two subwarps, which we define as PC-aligned subsets
of a warp’s threads. After this point, one subwarp, SO, runs
“Shader A” and the other, S1, runs “Shader B”.

Modern GPUs serialize the execution of these shader
programs within a warp. A scheduling policy chooses one
subwarp to execute first, and when that subwarp runs to
a statically designated point of convergence, only then will
the GPU execute the other subwarp. For example, if subwarp
SO runs first, then it must run to completion before S1 can
begin execution. This approach is inefficient for workloads

A megakernel’s threads can potentially invoke several shader programs
for a given kernel invocation, which differentiates megakernels from regular
single-program compute kernels.
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Figure 1: Divergent shader execution. Subwarps SO and S1
execute example single-block shaders A and B respectively
in a divergent manner.

in which there are insufficient active warps to effectively
hide the workload’s memory requests. We propose Subwarp
Interleaving (SI) to allow the GPU’s scheduler to interleave
subwarps instead of serializing them, enabling long-latency
operations from divergent code paths to overlap in time and
reducing average exposed memory latency.

Figure 2 compares today’s subwarp serialization (labeled
“Baseline SIMT”) to Subwarp Interleaving for the example
in Figure 1, using only two subwarps for clarity. In the
baseline case (Figure 2a), the load-to-use stalls due to
memory accesses in diverged subwarps S0 and S1 cannot be
overlapped because of the serialized execution of divergent
threads. In Figure 2b, Subwarp Interleaving switches be-
tween the subwarps in a warp when the program would oth-
erwise stall. With Subwarp Interleaving, instead of stalling at
point Q, a subwarp scheduler recognizes that S1 is ready
and makes S1 the active subwarp. Subwarp S1 executes
instructions until it stalls at @ waiting for the result of the
texture operation, at which point the subwarp scheduler can
swap SO back in and successfully hide the long-latency load.
Subwarp Interleaving increases the perceived occupancy of
the GPU, which allows the architecture to better tolerate
long-latency operations.

In this paper, we present key lessons from our next-
generation GPU architecture exploration work on Subwarp
Interleaving. We study its potential on real-time raytraced
graphics applications, which represent an important and lu-
crative application category. To characterize the opportunity
for better latency tolerance with Subwarp Interleaving, we
define exposed long-latency or load-to-use stalls as cycles
when no active warp in an SM is able to issue, and at
least one active warp is stalled on an outstanding memory
load operation. The lower this metric, the better the latency
tolerance. Figure 3 shows total exposed load-to-use stalls
and exposed load-to-use stalls in divergent code blocks, both
normalized to respective kernel runtimes, across our suite of
raytracing kernels. Despite the latency tolerance and latency
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Figure 2: Subwarp Interleaving concept. In GPUs today, the
scheduler serializes the execution of subwarps SO and S1,
and is unable to hide load-to-use stalls in each shader. The
subwarp scheduler interleaves the execution of SO and S1
to hide load-to-use stalls, thereby reducing overall execution
time of the program.
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Figure 3: Characteristics favoring Subwarp Interleaving. SI
targets applications with higher divergent load-to-use stalls.

reduction improvements in modern NVIDIA GPUs [31],
we see that these applications are often stalled waiting for
memory, and a significant percentage of those stalls are in
divergent code regions. These characteristics favor Subwarp
Interleaving. However, even though Subwarp Interleaving is
theoretically sound and successfully reduces exposed load-
to-use stalls in raytracing applications (sometimes dramati-
cally) through effective latency tolerance, multiple practical
considerations, including limited performance upside for ad-
ditional area and design complexity, along with viable near-
term algorithmic workarounds, make commercialization of
this feature less attractive.
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of 6.3%, and up to 20%, over a baseline Turing-like
configuration across our suite of raytracing application
traces.

o Lastly, we describe practical considerations that chal-
lenge the adoption of SI and outline the conditions
necessary for such a design feature to be attractive for
future GPUs.

While we focus on raytracing in this paper, the concepts
we present generalize to applications with similar character-
istics. Namely, any divergent GPU program, including GPU
computing programs, with long stalls and low occupancy
might also benefit from our work. The next section describes
the baseline architecture used in this study and shows how
raytracing lends itself to Subwarp Interleaving.

II. BACKGROUND

Video games are a staple in today’s culture, and though
GPUs are used for a wide variety of applications, they
are still designed with graphics in mind. Gaming industry
revenue is measured in hundreds of billions of dollars [1];
gaming platforms are ubiquitous, and gamers play their
favorite titles on mobile devices, consoles, PCs, and in the
cloud; universities now offer scholarships for Esports [14];
and millions of viewers watch the best Esports athletes
compete [36].

Raytracing is the gold standard for rendering realistic
images, but until recently has been too computationally
demanding to meet the real-time constraints of gaming.
This section provides background information on both real-
time raytracing as well as the GPU architectures designed
to accelerate this burgeoning workload. Our goal in this
section is to illustrate the challenges we face when mapping
raytracing workloads onto GPUs, and not to elaborate on
the rich field of raytraced computer graphics.

A. GPU Baseline

GPU programming models allow the creation of thou-
sands of threads that each execute the same code. NVIDIA’s
programming model groups threads into 32-element vectors
called warps to improve efficiency. The threads in each
warp execute in a SIMT (single instruction, multiple thread)
fashion, all fetching from a single Program Counter (PC) in
the absence of control flow. In most programs, many warps
map to a single GPU core, or streaming multiprocessor
(SM) in NVIDIA’s terminology. A GPU consists of multiple
such SM building blocks along with a memory hierarchy
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Figure 4: Turing-like SM architecture.

including SM-local scratchpad memories and L1 caches, a
shared L2 cache, and multiple memory controllers.

Figure 4 shows a diagram of an NVIDIA Turing-like
SM architecture. The SM contains four processing blocks,
each of which contains a front-end that feeds the processing
block with instructions; an LO instruction cache; 8 “warp
slots” that hold warp-private scheduling data (e.g., program
counters, scoreboard state, etc.) for the warps that map
to the processing block; a datapath for executing SIMT
instructions; and finally, a warp scheduler for selecting
one of the processing block’s warps to schedule onto the
datapath [26].

Branches and function calls can introduce divergence in
which threads within a warp may take different control flow
paths; in such cases, the SIMT datapath is underutilized be-
cause SIMT execution serializes control flow. For example,
if all 32 threads in a warp execute a branch, but only four of
those threads take the branch, the warp will splinter into two
subwarps. One subwarp contains the four threads that take
the branch, and the other subwarp contains the remaining
28 threads. Strict SIMT execution forces these subwarps
to run serially: one subwarp will run until it reaches a
compiler-defined convergence point that is common to both
subwarps and wait, and then the other subwarp will run to
the convergence point where they will rejoin. Divergence
therefore increases the number of SIMT instructions a shader
program must execute. Our Subwarp Interleaving approach
builds on independent thread scheduling, a new divergence-
handling paradigm introduced in Volta that enables flexible,
fine-grain synchronization among a warp’s threads [2], [25],
[26].

A primary tenet of GPU execution is latency tolerance:
each processing block of a Turing SM can switch between
its 8 warp slots to hide long-latency instructions. A program
can use at most 8 warp slots per processing block, but
many other factors determine a shader program’s occupancy,
which is a measure of how full the SM’s warp slots are.
For example, as the number of registers used per thread



Figure 5: Raytracing example execution. Rays can quickly
diverge, which hinders SIMT efficiency.

increases (which is a processing-block-shared resource), the
number of warps that fit in the processing block decreases.
Likewise, occupancy decreases as shared memory usage and
the number of threads per block increases [28].

An SM statically distributes its warps among the warp
schedulers of the processing blocks, and on every cycle,
each processing block’s warp scheduler selects a warp that
is ready to execute its next instruction, if any, and issues the
instruction to the active threads of the warp [28]. However,
for memory latency limited workloads with low occupancy,
there may not be a ready warp for the scheduler to select
and the processing block will stall.

B. Raytracing

To satisfy the real-time constraints required of video
gaming, game developers have historically used rasterization
techniques, which are (relatively) fast and produce visually
appealing, though sometimes inaccurate, scenes. Movie stu-
dios, without real-time constraints, create special effects us-
ing computationally intensive raytracing techniques, which
recursively follow light paths backwards from the “camera”
to the objects in a scene, where eventually some rays hit an
emissive light source. Trends suggest raytracing will eventu-
ally become the new standard for gaming. First-class shader
language support has been added to the DirectX (DXR [23])
and Vulkan APIs [16], exposing the raytracing “pipeline”,
which GPUs accelerate to various degrees. For example, we
have added “RT-cores” to our GPUs at NVIDIA to accelerate
ray traversal [26] and gaming consoles such as the Xbox
Series X or the Playstation 5, based on AMD’s RDNA2.0
architecture, also accelerate ray-traced games [37].

The SM can offload the traversal of a special data structure
called the Bounding Volume Hierarchy (BVH) to an RT-
core, saving thousands of software instructions per ray [26].
An RT-core’s BVH traversal tests the intersection of a ray
against successively smaller bounding boxes until possibly
hitting a triangle, and returning either a “hit” or a “miss” to

the SM for further processing. The SM can independently
perform other compute or graphics work during a BVH
traversal.

Notwithstanding the enormous performance gains that RT-
cores provide, raytracing still poses significant optimization
challenges. Conceptually all ray paths start at the “camera”
and are cast out into the scene, and while the threads for
each ray are initially convergent, threads tend to diverge
and execute independently. Figure 5 uses a simple scene
to illustrate how six of a warp’s initially convergent threads
diverge over time in the raytracing megakernel. Initially the
warps in the megakernel convergently cast rays into the
scene by issuing asynchronous TraceRay calls to the RT-
cores [23]. The arrows in the figure correspond to processing
that the RT-cores perform, namely determining whether the
given rays intersect with any triangles in the scene. In
Figure 5, the RT-cores determine that three rays intersect
with the triangle labeled “A”, and three rays intersect with
“B”. The RT-cores return the specifics of each ray’s traversal
to the issuing SM, at which point the megakernel will invoke
Shader A or Shader B, as appropriate, thereby splintering
the convergent threads into two independent subwarps. The
shaders can recursively cast rays from a new location,
perhaps using the material properties (e.g., matte, glossy) of
the associated objects to stochastically scatter rays, as the
green arrows in the figure indicate [30]. A subset of rays
eventually reach an emissive light source, whose color the
shaders may combine at the reflected point(s) and eventually
at the camera.

We can refer to the megakernel’s structure to explain why
resource usage can be problematic for raytracing workloads.
Figure 1 shows that the divergent blocks are actually wholly
separate shader programs, and the caller at point (1) passes
parameters to the programs via a calling convention. Readers
who are familiar with the CUDA Application Binary Inter-
face (ABI) may recognize the challenges calling conventions
impose on GPU kernels: the kernel that is responsible for
calling functions must ensure that it has enough resources
to fulfill calls to any of its possible targets. For example,
if Shader A needs 32 registers to execute and Shader B
requires 128 registers, the entire kernel must use at least
128 registers, even if the kernel never dynamically calls
Shader B. Figure 1 is simplified in two ways: 1) it shows
two-way divergence, but in the worst case a warp can
diverge into 32 ways, and 2) it might suggest that shader
programs are necessarily simple, but in reality their control
flow can be arbitrarily complicated, with loops, conditional
statements, and recursive TraceRay calls [11]. Raytracing
applications, with multiple potential shader targets, tend to
stress the register file and lead to reduced occupancy. In
addition, raytracing shaders are typically latency sensitive
with relatively few math operations to hide outstanding
loads, which further exacerbates the effects of poor SM
occupancy.
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Figure 6: Subwarp Interleaving SM architecture. Our Sub-
warp Scheduler replaces the divergence handling mechanism
and uses subwarp wakeup and selection logic described in
III-B to select a new subwarp.

Existing techniques to attack such divergent latency-
sensitive codes focus on improving either SIMT convergence
or latency tolerance. While we defer a detailed comparison
of Subwarp Interleaving with prior work to Section VII,
we note briefly that SI differs from prior approaches by
opportunistically context-switching to different control paths
within a warp (i.e. subwarps) to tolerate load-to-use stalls,
without requiring additional warp slots or programmer in-
tervention. We next describe the design enhancements nec-
essary for SL

III. SUBWARP INTERLEAVING DESIGN

Warps are a primitive scheduling unit on modern GPUs,
which causes inefficiencies when warps diverge. Our work
attempts to increase the perceived occupancy of a GPU
by enabling independent scheduling of subsets of a warp’s
divergent threads, thereby efficiently using the available
warp scheduling slots. A processing block in an SM can
schedule a warp instruction on every cycle, though instruc-
tion throughput depends on many factors, including the
number of active warps and operand dependency fulfillment.
GPU shader cores employ a warp scheduler to determine
which warp, from among all active warps, gets to use the
core’s issue slots. At a high-level Subwarp Interleaving (SI)
treats subwarps of warps, defined as a maximal group of
threads at a given PC, as the primitive scheduling unit. As a
result, SI exploits warp divergence to allow warps that would
otherwise stall to gainfully occupy a scheduling slot. An SI
architecture demotes stalled subwarps of a warp so that other
subwarps of the same warp get a chance to execute.

As Figure 6 shows, we replace the baseline architecture’s
divergence handling unit with a subwarp scheduler unit,
which contains a thread status table and subwarp wakeup
and selection logic that chooses which of a warp’s subwarps

On BSSY, or
successful BSYNC
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subwarp PC not chosen

Barrier release
|NySSSIINSUN UD

STALLED
Figure 7: Thread status state machine with Subwarp Inter-
leaving. A divergence handling unit in a Turing-like archi-
tecture maintains per-thread state to decide which threads of
the warp execute at a given time. Subwarp Interleaving adds
the STALLED state to demote subwarps that have suffered
long-latency stalls. When a stalled subwarp’s outstanding
dependences complete, the subwarp becomes eligible for
scheduling again.

should execute when the warp scheduler selects the warp
for execution on a core. Importantly, SI does not change
the baseline architecture’s warp scheduler. The rest of this
section describes the components of an SI architecture and
how they interact with a baseline Turing-like architecture.

A. Divergence Handling for SIMT

Subwarp Interleaving leverages divergence and must
therefore closely interact with the underlying SIMT execu-
tion model, examples of which include SIMT stacks [19] and
modern convergence barrier models [25], [2]. While SI can
be applied to different SIMT execution models, we examine
it in the context of NVIDIA’s contemporary convergence
barrier architectures.

When a warp’s SIMT execution diverges, for example
because of a conditional branch, the warp will splinter into
two or more subwarps and the underlying architecture must
track each subwarp’s status. The architecture must provide
resources to track each thread to handle the degenerate, fully
divergent case where each thread operates independently of
the others.

Figure 7 describes a possible state machine that tracks
the status of a single thread. Baseline state transitions are
in black-and-white and Sl-specific additions to the state
machine are highlighted in color. Every thread starts in the
INACTIVE state. On program entry, threads transition to the
ACTIVE state. Thereafter, when a BSSY Bx operation [27]
executes, all active threads register themselves by setting a
per-thread bit in the associated barrier register, Bx.

On a divergent branch a divergence handling unit serial-
izes the execution of a warp’s subwarps. The unit chooses
one subwarp for active execution by leaving that subwarp’s



threads in the ACTIVE state and transitioning the threads of
the other subwarps to the READY state.

On encountering a BSYNC Bx operation, a thread can
remain in the ACTIVE state (labeled “successful BSYNC”
in the state transition diagram) if all threads participating in
barrier register Bx are either in the BLOCKED or INACTIVE
states. Otherwise, the thread moves to the BLOCKED state.

When an active subwarp’s threads transition to the
BLOCKED state, the divergence handling unit examines the
status of all threads and selects, via an action we call
subwarp-select, a subwarp to move from the READY
state to the ACTIVE state. In a Turing-like SIMT model, the
divergence handling unit triggers the subwarp-select
action based on thread states and per-thread program coun-
ters (PCs) stored in dedicated registers.

B. Subwarp Interleaving SIMT Operation

Subwarp Interleaving demotes subwarps that have suf-
fered load-to-use stalls. SI builds on the baseline architec-
ture’s thread status state machine by adding a new state,
STALLED, and three new types of transitions, namely,
subwarp—-stall (shown in red), subwarp-wakeup (in
green), and subwarp-yield (in dashed blue). While
the subwarp-stall and subwarp-wakeup transi-
tions are functionally required for long-latency tolerance,
subwarp-yield is optional but may provide extra Sub-
warp Interleaving flexibility. The blow-up of the subwarp
scheduler unit in Figure 6 shows the logical blocks re-
sponsible for subwarp-stall, subwarp-wakeup, and
subwarp-select.

subwarp-stall: Subwarps that suffer load-to-use
stalls on long latency operations cannot make forward
progress until their memory lookups return. Rather than
occupy a warp’s scheduling slots, simple combinational
logic in the subwarp stall block transitions threads of stalled
subwarps to the new STALLED state. If all threads of a
warp are STALLED, the warp scheduler will not select the
warp for execution. However, by transitioning a subwarp
that suffers a stall to STALLED, SI makes other READY
subwarps of the warp eligible for scheduling.

subwarp-wakeup: A dedicated block, called subwarp
wakeup, continually monitors specific scoreboards for suc-
cessful completion of outstanding long-latency operations
from threads of stalled subwarps, and transitions threads
upon completion to the READY state. The scoreboards the
subwarp wakeup block tracks can be textbook, per-register
completion trackers or count-based scoreboards, which are
low-complexity dependency trackers that leverage comple-
tion order guarantees for memory operations to infer bulk
completion of one or more operations based on outstanding
counts. We assume the latter in this paper.

subwarp-select: After a subwarp-stall,
subwarp-yield (described below), or an unsuccessful
BSYNC, the hardware must find a new subwarp to move to

the ACTIVE state. The subwarp selection block consults
thread status and per-thread PCs to transition subwarps in
the READY state to ACTIVE.

Optionally an ST architecture can support eager transitions
from the ACTIVE state to READY. The subwarp-yield
transition allows a subwarp to relinquish its scheduling slot
to another subwarp of the same warp. The transition can
be achieved either through an explicit software instruction,
encoded as a scheduling hint in the instruction stream, or
via fixed hardware policies. An example of a fixed hardware
policy is to yield after issuing a configurable threshold of
long-latency operations (such as texture lookups or global
memory loads) or operations to core-level shared functional
units, such as those executing transcendental operations.
While subwarp-stall enables interleaving of subwarps
at load-to-use stall points, subwarp-yield creates ad-
ditional opportunities for interleaving, potentially allowing
multiple subwarps of a warp to issue their respective mem-
ory loads even before any one subwarp of the warp suffers
load-to-use stalls. Subwarps that subwarp-yield move
to the READY state, allowing the subwarp selection block to
select them if another READY subwarp cannot be found.

C. Subwarp Interleaving Microarchitecture

We now fill in the details of the blocks presented in
Figure 6. The subwarp scheduler unit tracks the status of
a warp’s threads, and wakes up threads as and when their
data dependencies are satisfied. Figure 8 shows the hardware
structures SI uses for both tasks.

Prior to delving into the subwarp scheduler unit, we
briefly describe salient aspects of the count-based score-
boarding mechanism used in our design. A count-based
scoreboard, typically used with a variable latency operation
such as a memory lookup, is incremented when an associated
operation is issued and decremented when the associated
operation writes back. A dependent consumer blocks until
the corresponding tagged scoreboard counts down to a de-
sired value. If there are ordering guarantees for the producer
operation, a non-zero scoreboard count may be specified.
If not, the dependent operation will simply wait until the
scoreboard counts down to zero. This guarantees that all
register writes guarded by this scoreboard have completed
and the corresponding registers are safe for consumption.
While the baseline architecture has a limited number of
scoreboard counters per warp (Ng) and the counter incre-
ments and decrements are performed on a warp-wide basis,
Subwarp Interleaving replicates the same set of counters on
a per thread basis (or more generally on a per subwarp
basis) to avoid aliasing scoreboard updates and reads across
subwarps. With this background, we present the details of
the subwarp scheduler unit.

1) Thread Status Table: At the heart of the subwarp
scheduler unit is a per-warp 32-entry thread status ta-
ble (TST), which maintains information needed to perform
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both the subwarp-wakeup and subwarp-select op-
erations. Minimally, the TST must have dedicated storage for
each thread’s current state (3 bits) and pertinent information
on the counted scoreboard on which a subwarp has stalled
during dependency resolution, namely, the scoreboard ID (s
bits wide) and current count (¢ bits wide). The quantity s
equals loga(Ngp), where Ngp is the number of counted
scoreboard trackers per warp.

2) Subwarp Wakeup: A subwarp-stall transition
occurs when instruction issue stalls due to a required
scoreboard, sbid, not being ready. As part of the
subwarp—-stall transition, the TST records sbid and
its current counter value in the scoreboard ID and score-
board count fields, respectively, for all applicable threads.
Thereafter, every time a subwarp writes back a scoreboard-
protected operand to the vector register file, in addition to
updating the main set of per-thread scoreboards located in
the warp scheduler, those scoreboard IDs get broadcast to
the TST as well. Each TST entry has associated wakeup
logic that compares the broadcast scoreboard IDs with the
recorded ID in the entry. If any of the broadcast IDs match
with the recorded entry, the recorded count is decremented
by one. Otherwise, the earlier value for the count field is
retained. For simplicity, our design does not assume any
ordering guarantees for writeback operations. Thus only
when a TST entry’s scoreboard count field reaches zero and
its current state is STALLED, does the entry transition to the
READY state.

Figure 8b shows the wakeup logic for a single entry of
the TST. To handle the two writeback paths for long-latency
operations in our design, one from the texture units and
another from the load/store units, each TST entry has two
s-wide comparators and a ¢-wide subtractor to decrement
the scoreboard count on a successful scoreboard ID match.
The logic then uses a ¢t-wide comparator to compare the
outstanding scoreboard count with 0. If the above compari-

son is successful and the current state is STALLED (a 3-bit
comparator), the logic sets the current state to READY. For
a 32-entry TST, the above logic requires 128 comparators,
64 2:1 muxes, and 32 subtractors. Supporting per-thread
wakeup logic is an extreme point in the space that allows
the subwarp scheduler unit to support up to 32 independent
subwarps, but comes with a sizable cost in terms of extra
logic and state that warps must maintain. Total additional
storage per warp slot for a TST with Nrgr entries is
Nrst x (3 4+ s + t) bits. For this extreme design point,
with s = 3, t = 6, Nrgr = 32, and 32 warp slots per
SM, additional SM-wide storage for all the TSTs comes
to 1.5KB. In Section V we show that we can retain much
of the benefits of per-thread tracking by binning threads
of a subwarp into a limited number of TST entries. For
example, a TST with two entries could efficiently support
two subwarps per warp and would add a modest 96 bytes of
SM-wide storage over the baseline design. Storage for per-
subwarp scoreboards in the warp scheduler would reduce
commensurately as well.

3) Subwarp Selection: Recall that when there is no active
subwarp, the baseline relies on hardware support to identify
an eligible subwarp in the READY state and transitions
that subwarp of threads to ACTIVE. In our Sl-enabled
architecture, we implement this functionality in dedicated
logic called subwarp selection, that operates on information
available in the TST. The subwarp selection logic incurs
a fixed cost, called the subwarp switch latency, which we
model as 6 cycles.

We considered many policies to guide subwarp selection
and converged to a heuristic with a single configuration
knob that operates on stalled warps that contain at least
one READY subwarp. The knob controls when to trigger
subwarp-select to make a READY subwarp ACTIVE.
In this paper we consider three points in this knob’s space:
given N, the fraction of stalled warps among currently live
warps in an SM, we trigger subwarp-select when, 1) at
least one warp (per processing block) is stalled (N > 0), 2)
when at least half of the warps are stalled (N > 0.5), and 3)
when all warps are stalled (N = 1). Intuitively, switching
stalled warps when there are other active warps (N > 0)
helps hide the subwarp switch latency under the shadow
of the execution of those active warps. On the other hand,
switching too aggressively can cause cache thrashing that
a more conservative, demand-based policy such as N = 1
may avoid.

Our design then triggers subwarp-select on only the
lowest-numbered stalled warp with a subwarp in the READY
state. For warps with multiple READY subwarps, subwarp
selection selects the next READY subwarp in a round-robin
manner to transition to ACTIVE. If no ready subwarp is
available, the current subwarp transitions back to ACTIVE.



BSSY B0, syncPoint

. @PO0 BRA Else // PO is 1 for t0O, 0 for tl

TLD R2, RO, R1l; &wr=sb5 // incr. scoreboard 5
FMUL R10, R5, c[l]([1l6];

FMUL R2, R2, R10; &reg=sb5 // load-to-use stall
BRA syncPoint;

0 JHoNO W

1lse
TEX R1, R8, R9; &wr=sb2 // incr. scoreboard 2
FADD R1, R1, R3; &reg=sb2 // load-to-use stall
9. BRA syncPoint;
syncPoint:
10. BSYNC BO;

Figure 9: A simple code example that shows a divergent
if-then-else branch with load-to-use stalls along both paths.

D. Operation

The Subwarp Interleaving components work together as
follows to better tolerate long latency stalls. The currently
active subwarp transitions to STALLED upon suffering a
long-latency stall or moves to BLOCKED upon hitting a
BSYNC operation.

The subwarp selection heuristic then selects and transi-
tions a ready subwarp, if available, to the ACTIVE state. The
newly-active subwarp might issue long latency operations
from its code region, which could cause the subwarp to
transition to the STALLED state. Even if the code region
does not stall, the subwarp will eventually transition to the
BLOCKED state.

At the point where all subwarps are in the STALLED
or BLOCKED states, memory lookups from all applicable
subwarps of a warp will successfully overlap in time, thus
achieving improved latency tolerance compared to a baseline
execution that serializes execution of divergent subwarps.
Eventually, as memory lookups return to the SM, STALLED
subwarps move to the READY state, thus making them
eligible for selection again.

On a system that supports the subwarp-yield tran-
sition, after issuing a group of independent long latency
texture lookups or global memory loads, the issuing sub-
warp may optionally attempt to yield its scheduling slot
(through the use of explicit software instructions or through
hardware based programmable thresholds) and eagerly
move from ACTIVE to the READY state. Theoretically,
subwarp-yield provides more flexibility to Subwarp
Interleaving and enables maximal memory latency overlap.
However, eager approaches like subwarp-yield lead to
more switching on average in a subwarp’s lifetime. There are
two reasons why frequently switching between subwarps can
hurt performance: First, subwarp selection incurs a fixed six
cycle overhead, and second, ping-ponging between subwarps
can thrash a processing block’s LO instruction cache.

Figure 10a illustrates the operation of the TST and the
state machine described earlier on the toy example from
Figure 9. We trace the execution of the toy example in steps.
Each step may take one or more cycles. Though we show at
most one state change per step (across subwarps) for clarity,
in practice, since the subwarp-wakeup transition happens
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1| active |1 | |ACTIVE | 5 | |READY | 6 | | ACTIVE |10
Diverge W @ sat ¥ @ sat W @ Block ¥
0 |READY |7 o |READY | 7 o |STALL. |8 |2 0| ACTIVE | 9
1 | acTivE |3 L ISTALL. |5 |5 | IREADY | 6 | |BLOCK |10
A4 @ select W G) Select ¥ Sync v @)
0|READY |7 0 | ACTIVE | 7 0|STALL. |8 |2 | o |[ACTIVE |10
1 | acTive |4 - L |sTALL. |5 |5 _1 ACTIVE | 6 | | ACTIVE |10
(a) Without subwarp-yield.
Select Stall Wakeup
State PC Scbd 1 @ 1@ l@
0 | ACTIVE |1 0 | ACTIVE |7 0 |[READY |8 0 |STALL |8
1 | ACTIVE |1 1 |[READY |4 1 |STALL. |5 |5 1 |[READY | 6

Yiew V¥ (4) Select ¥ @ Wakeup Go)

Diverge +

o

READY

S}

READY |8 ACTIVE |8 READY |9

=)
=)

ACTIVE |3 READY |4 STALL. |5 |3 ACTIVE |6

READY |8 0|STALL. |8 |2 0 |READY |9

S}

READY

=}

BLOCK. |6

©
;
3
Yiew ¥ @ Sekect ¥ @ sal ¥ @ Block ¥ @)
7
4

| |sTALL |5

READY

ACTIVE |5

(b) With subwarp-yield.

Figure 10: TST operation with two 1-thread subwarps for
the example code in Figure 9. Initially, all threads are active.
When threads arrive at a divergent branch, the election logic
selects one thread to execute (ACTIVE) and moves the
other to a READY state. In (a), when the ACTIVE thread
encounters a load-to-use stall at the use instruction, it moves
to a STALLED state and the scheduler activates the READY
thread. In (b), an ACTIVE thread yields execution to the
READY thread as soon as it issues a long latency instruction
and does not wait for a stall in the pipeline.

asynchronously as a result of register writeback, STALLED-
to-READY state changes can happen concurrently with other
state changes brought about by the baseline SIMT model
itself. In step 1, control flow diverges at the branch at PC 2.
Prior to this, not shown in the figure, the BSSY B0, syncPoint
operation is executed by both threads, tO and tl, and the
convergence barrier mask in BO gets set to 0x0b11. After
control flow diverges, thread 0 (t0) goes down the “else”
path and its TST entry moves to the READY state. At step
2, thread 1 (t1) issues its long latency texture operation
at PC 3 and remains in the ACTIVE state. At step 3, tl
successfully executes an independent math operation at PC
4. At step 4, t1 suffers a load-to-use stall and moves to the
STALLED state. Thread O (t0) is selected in step 6 and issues
a long-latency operation (PC 7) at step 5. It suffers a load-
to-use stall in step 7. Meanwhile, in the background, t1’s
scoreboard stall condition cleared and it is now eligible for
selection. Thread t1 becomes ACTIVE in step 8, attempts to
execute the BSYNC at step 9, and moves to the BLOCKED
state in step 10.



Table I: Architecture simulation parameters.

# Streaming Multiprocessors 2

Processing blocks per SM 4

Warp slots per processing block | {2,4,8}

Warp slots per SM {8,16, 32}

Warp size 32

L1 data cache size 128KB

L1 instruction cache size {64K B}

LO instruction cache size {16 K B}

L1 miss latency {300, 600,900} cycles
Subwarp switch latency 6 cycles

In a similar vein, Figure 10b illustrates Subwarp In-
terleaving on a system supporting the subwarp-yield
transition. They key difference is that the subwarp-yield
transition at step 2, after tl has issued its long-latency
texture operation, enables t0 to become ACTIVE and issue
its long-latency texture operation much earlier in the overall
schedule (at step 4) compared to Figure 10a, where tl is
able to issue its long-latency lookup only in step 6. Thus,
subwarp-yield allows a system to maximize memory
level parallelism, which is key to lowering average memory
access latencies.

IV. METHODOLOGY
A. Simulator

To collect the results in this paper, we extended an
execution-driven, proprietary simulator that guides NVIDIA
GPU product designs. This bare metal simulator (i.e. not
full-stack) initializes data and instruction memory from
traces. We configure the simulator for a Turing-like SM in
a cycle-accurate fashion, including processing blocks, L1
caches, texture units, and the RT-core raytracing accelerator.
Because our target applications are not memory bandwidth
limited, which we verified by examining performance coun-
ters from silicon runs on an NVIDIA GeForce Titan RTX,
we do not model a complete GPU memory system, choosing
instead to model memory with a simple fixed-latency stub
model. Our stub model allows us to flexibly sweep through
a range of memory latency values relatively quickly, often
100x faster than a full GPU simulator with a memory
system.

Table I lists the simulation parameters used to collect
the results in this paper. We test the sensitivity of SI to
simulation parameters, such as the number of warp slots
per processing block and SM. As mentioned above, we do
not model the memory system beyond the SM, but instead
study sensitivity to a variety of memory latencies, ranging
from optimistically fast to pessimistically slow. To evaluate
Subwarp Interleaving we modified our simulator to execute
the policies described in Section III-D.

B. Application Traces

Our work focuses on raytracing applications because they
tend to be highly divergent with unpredictable memory

Table II: Real-time graphics applications. GI-D stands for
Global Illumination - Diffuse, AO for Ambient Occlusion,
R for Reflection, and M for multiple raytracing effects
represented in a given trace.

Trace RT

Application Name effect Description
ArchViz Interior AV1 GI-D Architectural rendering [7]
ArchViz Interior AV2 AO Architectural rendering
Battlefield V scene 1 BFV1 R Game [13]
Battlefield V scene 2 BFV2 R Game
Control Ctrl M Game
RTX Collage Colll AO Internal demo
RTX Collage Coll2 R Internal demo
DDGI Villa DDGI GI-D Greek Villa demo for [20]
Mechwarrior 5 MW R Game
Minecraft MC M Game

behavior. The raytracing algorithms in all our workloads,
which are based on the DXR API [23], use Bounded Volume
Hierarchy (BVH) data structures as configured by their
respective developers. SI leverages RT-core accelerated BVH
traversals to see past traversal bottlenecks and optimize exe-
cution of shading-heavy RT algorithms with high divergence
and memory load-to-use stalls. Shadow raytracing regimes
tend to be traversal-heavy and their performance is primarily
limited by the RT-cores. Such regimes have minimal shading
and are unlikely to benefit from SI. On the other hand,
techniques like global illumination and reflection raytracing
tend to be shading-hecavy and benefit nicely from SI. We
draw our suite of application traces from this latter category.
All of our traces are based on megakernels as our driver
currently prefers a megakernel-based implementation for
raytracing calls.

Table II provides details of the application traces we
evaluate in Section V. The ArchViz Interior and Mech-
warrior 5 applications are based on Unreal Engine 4 [6],
Control is based on Northlight Engine [32], and Battlefield
V on Frostbite 3 [4]. The other applications use custom
development frameworks. Since full-frame, trace-based exe-
cution is intractable, we restricted ourselves to simulating
only key raytracing kernel calls. We collected traces of
these kernels from recent builds of the associated DXR
applications as well as a recent NVIDIA GeForce driver.
Our simulator performs systematic sampling of cooperative
thread arrays (CTAs) from these traces, captured at either
1080p or 1440p resolution, to obtain representative coverage
of the entire screen space for all our workloads at reasonable
simulation times (akin to similar sampling techniques for
CPU simulations [40]). While our kernel-level results do
not reflect current frame-level opportunity, we predict that
raytracing will become the de facto real-time rendering
standard. Thus we use the performance of these kernels as
a proxy for the future opportunity of SI.

V. RESULTS

Before considering raytracing kernels from graphics ap-
plications, we first evaluate SI using a microbenchmark.



__global__ wvoid subwarps (int x_data, int »x_result)
{

int tid = blockIdx.x % blockDim.x + threadIdx.x;

int warp_tid = tid $ WARP_SIZE;

int subwarpid = warp_tid / SUBWARP_SIZE;

int subwarp_offset = subwarpid =*
NUM_ACCESSES_PER_SUBWARP;

for (int it = 0; it < ITERATIONS; it++) {

switch (subwarpid) {
case 0:
_result[tid] = gen_1d_to_use_stalls(_data,
subwarp_offset, subwarpid);
break;
case 1:
_result[tid] = gen_1d_to_use_stalls(_data,
subwarp_offset, subwarpid);
break;
case 31:
_result[tid] = gen_1d_to_use_stalls(_data,
subwarp_offset, subwarpid);
break;
}
__syncwarp();
subwarp_offset += L2_CACHE_LINE;

Figure 11: A CUDA microbenchmark that mimics a RT
megakernel’s structure but allows us to selectively generate
up to 32 subwarps with guaranteed exposed load-to-use
stalls.

Table II: Subwarp Interleaving performance on the mi-
crobenchmark with an L1 miss latency of 600 cycles.

SUBWARP_SIZE | 16 | 8 [ 4 | 2 [ 1
Divergence factor 2 4 8 16 32
Speedup(x) 1.98 | 395 | 7.84 | 1522 | 12.66

A. CUDA Microbenchmark

Figure 11 shows the core of a simple CUDA micro-
benchmark that we designed to mimic a megakernel’s struc-
ture while allowing us to test the upper bounds of SI’s
performance. We can configure the benchmark to splinter a
warp from two to 32 subwarps (via SUBWARP_SIZE). Each
subwarp calls the gen_1d_to_use_stalls function,
which performs a reduction of a slice of _data. We ensure
that each subwarp will suffer compulsory data cache misses
when executed. Table III shows the performance potential
of Subwarp Interleaving on the above microbenchmark. We
vary the divergence factor as 2, 4, 8, 16, and 32, by varying
SUBWARP_SIZE as 16, 8, 4, 2, and 1, respectively. SI de-
livers almost linear speedups until about 16-way divergence
before tapering off. Performance plateaus at high divergence
factors (above 16) because with increasing active subwarps,
the number of active instruction fetch streams increases as
well, leading to LO and L1 instruction cache thrashing. With
32-way divergence, we see load-to-use stalls decrease to O
with Subwarp Interleaving, but instruction fetch stalls rise
sharply, leading to diminishing returns.
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Figure 12: Subwarp Interleaving versus baseline at a fixed

L1 miss latency of 600 cycles.

B. Raytracing Kernels

We next describe the performance of Subwarp Interleav-
ing on real-time raytracing kernels. Unlike the microbench-
mark scaling study, our goal here is to evaluate the effec-
tiveness of SI in exploiting these kernels’ natural divergence
to effectively tolerate memory stalls.

We study the performance of our technique with an
exhaustive sweep over three different parameters: subwarp
selection trigger policy, L1 miss latency, and Subwarp Inter-
leaving with and without the subwarp-yield transition in
our state machine. As mentioned in Section III-C, we trigger
subwarp selection based on how many warps are currently
stalled in a given processing block. We pick three points
on that axis: NV = 1 to represent all active warps having
stalled, N > 0.5 to represent at least half of the active
warps having stalled, and N > 0 to represent any active
warp having stalled. For L1 miss latency, we sweep across
values of 300, 600, and 900 cycles. For the last parameter,
we report just the basic Subwarp Interleaving design as SOS
(for switch-on-stall) and SOS plus subwarp-yield after
long-latency instructions as Both.

Figure 12a shows the performance of subwarp interleaving
at a fixed L1 miss latency of 600 cycles. In addition to
showing the performance of individual settings, the graph
shows a BestOf bar that captures the best performance for
each application across all SI configurations. The single best
performing setting is Both, N > (.5, achieving an average
speedup of 6.3%. Average BestOf speedup across all settings
is 6.6%.
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Figure 13: Average speedups of Subwarp Interleaving over
baseline across different L1 miss latency settings.

Figure 12b shows the reduction in total exposed load-
to-use stalls (total stalls) and exposed load-to-use stalls in
divergent code blocks (divergent stalls) from Subwarp Inter-
leaving with respect to the corresponding baseline metrics.
Divergent stalls dropped by 26.5% on average (yellow bars).
However, more than half of our traces see small reductions
for divergent stalls. There are two primary reasons that warps
may be divergent yet present few interleaving opportunities.
First, SI cannot generate two independent subwarps for “if-
then” divergence because the subwarp that executes the then
code must finish before the two subwarps rejoin and continue
executing together. SI can only exploit divergence that leads
to multiple, independent subwarps and is thus applicable
only to divergent if-then-else statements, switch statements,
and divergent function calls. Second, even for branches
that generate two or more independent subwarps, which we
expect the megakernel’s primary branch to do, SI is still at
the mercy of the subwarp selection order. Ideally subwarps
with loads execute before compute-heavy subwarps that will
never trigger a subwarp-stall or subwarp-yield.
Thus, while the divergent stalls metric is indicative of
opportunity, it provides only a loose approximation. For
applications with significant load-to-use stalls where most
of the stalls are in divergent code blocks, SI is likely to
help (BFVI, BFV2). For applications where most load-to-
use stalls are in convergent code, performance is unlikely
to improve commensurately with the reduction in divergent
stalls (Colll, Coll2).

C. Sensitivity Studies

1) LI miss latency: We summarize the sensitivity to
latency by reporting the average performance of the various
configurations in Figure 13. As expected, Subwarp Inter-
leaving performs better with increasing L1 miss latencies,
demonstrating its ability to effectively tolerate memory
latency stalls. The BestOf speedups across L1 miss latency
settings of 300, 600, and 900 cycles are 4.2%, 6.6%, and
7.6%, respectively.

2) Peak warp slots per SM: As applications increasingly
look to exploit task-level parallelism with modern graphics
API support for Asynchronous Compute queues (“Async”
queue) [5], [35], there will be contention for limited avail-
able warp slots since tasks from multiple queues will overlap
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Figure 15: Sensitivity to subwarps count (32 peak warps).

in time. This trend may prevent an approach like Dynamic
Warp Subdivision [22], which relies on forking new warps
at divergence points, from finding enough free warp slots
to achieve maximal latency tolerance. To study the effect
of limited warp slots on the performance of SI, we sweep
through different maximum warp count settings and compare
Subwarp Interleaving with identically warp-throttled base-
line configurations in Figure 14. SI sees a small impact from
throttling active warps, delivering 5.1%, 5.7%, and 6.3%
average speedups when peak warp count is restricted to 8§,
16, and 32 warps over equivalent baselines. Warp throttling
leads to reduced latency tolerance overall, including in
non-divergent code regions, which leads to reduced overall
efficiency. This reduction in latency tolerance is responsible
for SI’s reduced impact with warp throttling.

3) Subwarps per warp: We study the sensitivity of Sub-
warp Interleaving to the number of subwarps per warp
supported in the SI design. The sensitivity we present allows
an architect to choose an appropriately sized thread status
table (TST) to balance performance with power and area
concerns. Figure 15 presents speedup data from sweeping
subwarp count from 2, 4, 6, to unlimited (max 32). Even
with support for as little as 2 subwarps per warp, Subwarp
Interleaving is able to achieve an average speedup of 4.2%,
with speedups increasing sub-linearly with more subwarps
per warp. The 4 subwarps per warp configuration only
requires a 4-entry TST and uses one eighth the TST and
subwarp wakeup logic of the unlimited configuration. Yet the
4 subwarp configuration achieves a 5.2% speedup, capturing
82% of the unlimited configuration’s average upside.



4) Instruction cache sizing: Finally, our baseline config-
uration upsizes the LO and L1 instruction caches (16KB and
64KB respectively) to better cater to the needs of Subwarp
Interleaving. An experiment with 4x smaller LO and LI
instruction caches (to mimic shipping GPUs) yielded a 4.5%
average speedup, which is about 70% of our single best
configuration speedup of 6.3%.

VI. DISCUSSION

Our primary objective with SI was to reduce exposed
memory load-to-use stalls. Our evaluation on a cycle-level
simulator shows that Subwarp Interleaving does reduce ex-
posed long-latency stalls, sometimes significantly. However,
productization of SI is challenged by several factors.

First, the reduction in exposed long-latency stalls due to SI
often comes with an increase in instruction fetch stalls due to
frequent switching among instruction streams. These stalls
can be mitigated with larger caches, albeit at an area cost. In
an area-limited chip design, spending additional area on one
feature typically involves reducing area for or eliminating
another feature. These decisions require broad performance
per mm? analyses across many candidate features in a
product design, with the ones producing the biggest bang
for the buck winning out.

Second, Amdahl’s Law limits speedups for some of the
raytracing kernels. Recall that the invocation of various hit
or miss shaders in the raytracing megakernel depends on
the outcome of a ray traversal operation, which the RT-core
unit performs. While Subwarp Interleaving reduces exposed
load-to-use stalls in divergent hit/miss shader execution for
all of our raytracing kernels, the latency of ray traversal
operations is often the dominant factor.

Third, the order in which a processing block encounters
subwarps is important. For example, in a warp with two
subwarps A and B, if only subwarp B contains load-to-
use stalls, execution order matters. Unless B executes first,
SI will be of no value since A will never switch. When
A completes and B begins executing, no other subwarp is
available to switch to on its memory stalls. Future work
could explore the use of software hints to convey load stall
probabilities in each divergent path so that hardware can
prefer the higher load stall probability path first and use the
other path for latency tolerance. Or, in the absence of such
hints, the hardware could randomize the execution order of
divergent paths, and thus improve the odds of creating a
profitable dynamic subwarp scheduling order.

Fourth, while Subwarp Interleaving broadly applies to
raytracing kernels, and we argue that raytracing is an ex-
tremely important application category, SI currently applies
to a limited set of code. SI can only improve application
performance when there are long stalls within divergent
code, and too few active warps to hide the latency. As
skilled SIMT programmers strive to remove divergence from
code, we did not expect SI to be universally applicable.
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We profiled a broad suite of more than 400 non-raytracing
CUDA and Direct3D compute kernels and found only 11
that feature long stalls in divergent code, and none benefited
beyond the margin of noise from SI.

In addition, current RT game titles are not fully ray-
traced, but also include general compute and traditional
rasterization-based graphics, which dilute SI’s gains at the
frame level. While Subwarp Interleaving is not readily
applicable to today’s workloads, we remain optimistic that
as GPU applications and technologies evolve, it could be a
boon for a future GPU design. As researchers explore novel
uses of NVIDIA’s raytracing cores to accelerate complex
tree data structure traversals [39], [34], [24], [41], we expect
that more applications with unpredictable control flow and
dependent memory fetches will begin running efficiently
on modern GPUs, and a first class hardware feature like
Subwarp Interleaving that exploits divergence to achieve
better latency tolerance will find broader benefit. Though
sophisticated software techniques can help improve conver-
gence rates and memory level parallelism [12], [38], [17],
a well-designed hardware technique will avoid the runtime
overheads that software techniques impose and will also
relieve application developers of the burden of devising
strategies to overcome performance problems and allow
them to focus on delivering richer functionality.

VII. RELATED WORK
A. Increasing Convergence

Multiple software techniques exist to improve conver-
gence. OptiX is a raytracing library for SIMT architectures
that relies on an iterative, warp-level scheduler to reduce di-
vergence [29]. On any given iteration the scheduler chooses
the predominant shader (i.e, the largest subwarp) and pushes
the execution of the other subwarps to future scheduling
iterations where they might combine with new work to
become part of a predominant subwarp [29]. Speculative
reconvergence similarly aligns subwarps across loop itera-
tions to increase convergence [3], and SIMT microscheduling
performs “task fetching” and “task context switching” to en-
sure that threads in a warp execute convergently and do not
remain idle [8]. Hoberock et al. proposed stream compaction
to sort shaders, triggered by divergent ray intersections, prior
to scheduling them in a highly convergent fashion [12].
Laine et al’s wavefront technique uses global queues to
achieve implicit compaction, which then enables convergent
material shading with material-specific kernels [17]. Wald’s
active thread compaction technique improves path-tracing
performance by compacting active threads globally prior
to path-extension [38]. Dynamic warp formation [10] and
thread block compaction [9] are hardware techniques that
regroup threads across warps to increase convergence.

While these approaches would likely reduce divergence
and serialization penalties in raytracing applications, the cost
of performing thread grouping and state migration across



warp contexts is significant and may impose non-trivial costs
on interactive applications. In contrast to the above tech-
niques, our Subwarp Interleaving approach is lighter weight.
It leverages divergence to interleave subwarps to effectively
tolerance long latency stalls, a primary performance limiter
in raytracing shaders.

B. Increasing Scheduling Opportunities

Subwarps, not warps, are the basic scheduling unit of our
approach. Architectures that support narrow SIMT widths
similarly increase scheduling opportunities when control
flow diverges [18]. However, architects must carefully bal-
ance the ramifications of reducing SIMT width because
many important application classes (e.g., deep neural net-
works and legacy computer graphics) are highly convergent.

Some proposed SIMT and SIMD architectures support
flexible warp sizing. Variable warp sizing uses a smaller base
warp size of four threads and groups together convergent
subwarps while allowing diverged subwarps to execute inde-
pendently [33]. Variable warp sizing reduces the penalty of
serialization due to divergence and helps interleave execution
of instructions across subwarps, but the technique requires
complex hardware to handle warp grouping and it can
exacerbate divergence in cases where a subwarp’s threads
are randomly scattered across lanes (and therefore base
warps are still likely to contain threads from more than one
subwarp). Robust SIMD likewise adjusts SIMD width based
on performance feedback [21].

Keckler et al. propose an architecture where each lane is
an independent multiple instruction, multiple-data (MIMD),
multi-threaded processor. The lanes run most efficiently
when all threads are processing the same instruction in SIMT
fashion, but diverged threads can still continue to execute in
MIMD fashion [15].

Dynamic Warp Subdivision (DWS), which also dynam-
ically subdivides warps, inspired our approach. Meng et
al. proposed DWS before real-time raytracing was tractable,
and GPUs have changed substantially in that time. Whereas
DWS introduced bespoke architectural features [22] to sup-
port subwarp-level scheduling, NVIDIA’s modern threading
strategy provides a natural mechanism for Subwarp Inter-
leaving. Other key differences between our approaches are:
a) our approach does not rely on programmer intervention,
whereas DWS does; b) our approach interleaves subwarps
at stall points, not at branches; and c¢) our approach allows
for unlimited subwarp creation, whereas DWS is limited by
availability of unused warp slots.

Graphics APIs and GPUs have recently added support for
asynchronous compute queues [5], [35], which allows the
warp scheduler to overlap work from multiple queues that
contain disparate work. Asynchronous compute can improve
SM occupancy, but it requires a developer to carefully
orchestrate their computation and resource usage. We believe
that our approach will perform better than DWS, especially
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when there are few unused warp slots as is likely to be the
case with effective asynchronous compute use.

VIII. CONCLUSION

While real-time raytracing produces more realistic and
immersive images than rasterization techniques, the added
realism comes with a cost. Raytracing kernels stress GPUs
in three fundamental ways: they are highly divergent, they
suffer from poor occupancy, and warps routinely stall wait-
ing for long latency operations to complete. Ordinarily, GPU
schedulers can hide long latency stalls by switching to other
ready warps, but raytracing kernels often have insufficient
active warps to hide latency. Subwarp Interleaving is a new
technique that aims to reduce pipeline bubbles in raytracing
kernels. When a long latency operation stalls a warp and
the GPU’s warp scheduler cannot find an active warp to
switch to, a subwarp scheduler can instead switch execution
to another divergent subwarp of the current warp. We present
architectural extensions to an NVIDIA Turing-like GPU,
which leverages many of the features inherent to the baseline
architecture for supporting independent thread scheduling.
SI substantially reduces the exposed load-to-use stalls by
10.5%. Our evaluation shows that secondary performance
limiters cap the potential of SI in current applications and
architectures. While Subwarp Interleaving shows some com-
pelling performance gains (6.3% average, 20% maximum)
across a suite of raytracing application traces, its narrow us-
age and design complexity limit its attractiveness to current
GPU architectures. However, the evolution of application
demands and their control behavior may motivate future
examination of latency tolerance and divergence mitigation
approaches such as Subwarp Interleaving.
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