
Memory Access Scheduling
to Reduce Thread Migrations

SANA DAMANI, PRITHAYAN BARUA, VIVEK SARKAR

HABANERO EXTREME SCALE SOFTWARE RESEARCH LABORATORY

GEORGIA INSTITUTE OF TECHNOLOGY

HTTP://HABANERO.CC.GATECH.EDU

1

http://habanero.cc.gatech.edu/

EMU Architecture

2

EMU NODE

Stationary Core

Nodelet
1

Migration Engine

Nodelet
2

Nodelet
3

Nodelet
4

Nodelet
5

Nodelet
6

Nodelet
7

Nodelet
0

Memory Memory Memory Memory Memory Memory Memory Memory

Migrate small
thread context
instead of data.

Applications with weak data locality:
• Graph algorithms
• Sparse matrix applications

http://lucata.com

https://lucata.com/

Suboptimal Thread Migrations

3

EMU NODE

Stationary Core

Nodelet
1

Migration Engine

Nodelet
2

Nodelet
3

Nodelet
4

Nodelet
5

Nodelet
6

Nodelet
7

Nodelet
0

Memory

A[0]
A[8]

Memory

A[1]
A[9]

Memory

A[2]
A[10]

Memory

A[3]
A[11]

Memory

A[4]
A[12]

Memory

A[5]
A[13]

Memory

A[6]
A[14]

Memory

A[7]
A[15]

S1: LD A[1]

S2: LD A[2]

S3: LD A[9]

Suboptimal Thread Migrations

4

EMU NODE

Stationary Core

Nodelet
1

Migration Engine

Nodelet
2

Nodelet
3

Nodelet
4

Nodelet
5

Nodelet
6

Nodelet
7

Nodelet
0

Memory

A[0]
A[8]

Memory

A[1]
A[9]

Memory

A[2]
A[10]

Memory

A[3]
A[11]

Memory

A[4]
A[12]

Memory

A[5]
A[13]

Memory

A[6]
A[14]

Memory

A[7]
A[15]

S1: LD A[1]

S2: LD A[2]

S3: LD A[9]

Suboptimal Thread Migrations

5

EMU NODE

Stationary Core

Nodelet
1

Migration Engine

Nodelet
2

Nodelet
3

Nodelet
4

Nodelet
5

Nodelet
6

Nodelet
7

Nodelet
0

Memory

A[0]
A[8]

Memory

A[1]
A[9]

Memory

A[2]
A[10]

Memory

A[3]
A[11]

Memory

A[4]
A[12]

Memory

A[5]
A[13]

Memory

A[6]
A[14]

Memory

A[7]
A[15]

S1: LD A[1]

S2: LD A[2]

S3: LD A[9]

Redundant Thread Migrations

6

EMU NODE

Stationary Core

Nodelet
1

Migration Engine

Nodelet
2

Nodelet
3

Nodelet
4

Nodelet
5

Nodelet
6

Nodelet
7

Nodelet
0

Memory

A[0]
A[8]

Memory

A[1]
A[9]

Memory

A[2]
A[10]

Memory

A[3]
A[11]

Memory

A[4]
A[12]

Memory

A[5]
A[13]

Memory

A[6]
A[14]

Memory

A[7]
A[15]

S1: LD A[1]

S2: LD A[2]

S3: LD A[9] 3 Migrations

Memory Access Scheduling

7

EMU NODE

Stationary Core

Nodelet
1

Migration Engine

Nodelet
2

Nodelet
3

Nodelet
4

Nodelet
5

Nodelet
6

Nodelet
7

Nodelet
0

Memory

A[0]
A[8]

Memory

A[1]
A[9]

Memory

A[2]
A[10]

Memory

A[3]
A[11]

Memory

A[4]
A[12]

Memory

A[5]
A[13]

Memory

A[6]
A[14]

Memory

A[7]
A[15]

S1: LD A[1]

S3: LD A[9]

S2: LD A[2]

Memory Access Scheduling

8

EMU NODE

Stationary Core

Nodelet
1

Migration Engine

Nodelet
2

Nodelet
3

Nodelet
4

Nodelet
5

Nodelet
6

Nodelet
7

Nodelet
0

Memory

A[0]
A[8]

Memory

A[1]
A[9]

Memory

A[2]
A[10]

Memory

A[3]
A[11]

Memory

A[4]
A[12]

Memory

A[5]
A[13]

Memory

A[6]
A[14]

Memory

A[7]
A[15]

S1: LD A[1]

S3: LD A[9]

S2: LD A[2]

Memory Access Scheduling

9

EMU NODE

Stationary Core

Nodelet
1

Migration Engine

Nodelet
2

Nodelet
3

Nodelet
4

Nodelet
5

Nodelet
6

Nodelet
7

Nodelet
0

Memory

A[0]
A[8]

Memory

A[1]
A[9]

Memory

A[2]
A[10]

Memory

A[3]
A[11]

Memory

A[4]
A[12]

Memory

A[5]
A[13]

Memory

A[6]
A[14]

Memory

A[7]
A[15]

S1: LD A[1]

S3: LD A[9]

S2: LD A[2]

Memory Access Scheduling

10

EMU NODE

Stationary Core

Nodelet
1

Migration Engine

Nodelet
2

Nodelet
3

Nodelet
4

Nodelet
5

Nodelet
6

Nodelet
7

Nodelet
0

Memory

A[0]
A[8]

Memory

A[1]
A[9]

Memory

A[2]
A[10]

Memory

A[3]
A[11]

Memory

A[4]
A[12]

Memory

A[5]
A[13]

Memory

A[6]
A[14]

Memory

A[7]
A[15]

S1: LD A[1]

S3: LD A[9]

S2: LD A[2] 2 Migrations

Memory Access Scheduling

Migrating threads instead of data helps applications with weak data locality

Redundant thread migrations result in slowdowns

Memory access scheduling:
◦ Identify and group co-located accesses to reduce thread migrations

◦ Maintain dependences

11

Design: Analysis

Goal: Identify co-located accesses

◦ Layout analysis:
◦ A: 1D

◦ Stride analysis:
◦ A[1], A[9]: nodelet 1
◦ A[2]: nodelet 2

◦ Dependence graph

12

Design: Transform

Goal: Memory Access Scheduling to group co-located accesses

◦ Integer Linear Programming

◦ Greedy Scheduler

13

Interaction with Loop Unrolling

for (int i = 0; i < N; i++)
{

for (int j = 0; j < N; j++)
{

S1: LD A[i][j] // N0
S2: LD B[j] // N1

}
}

14

for (int i = 0; i < N; i++)
{

for (int j = 0; j < N; j+=2)
{

LD A[i][j] // N0
LD B[j] // N1
LD A[i][j+1] // N0
LD B[j+1] // N2

}
}

for (int i = 0; i < N; i++)
{

for (int j = 0; j < N; j+=2)
{

LD A[i][j] // N0
LD A[i][j+1] // N0
LD B[j] // N1
LD B[j+1] // N2

}
}

Base
2N*N

Loop Unroll
2N*N

Memory Access Scheduling
3/2*N*N

Experimental Setup

15

Performance Metric Thread Migrations, Speedup

EMU Configuration 1 Node, 8 Nodelets

Per-Thread Registers 16

Compiler LLVM-Cilk

Migration Profiling emusim

Applications Linear Algebra, Polybench

Unroll factor 2

Reduction in Migrations

16

1.43

1.99 1.99

1.48

1.00 1.00
1.13

1.4

1.66 1.60

1.20

1.48

1.00 1.00 1.00

1.2

0.00

0.50

1.00

1.50

2.00

2.50

1 2 3 4 5 6 7 8

Migration Reduction Factor with Memory Access Scheduling

Series1 Series2

Up to 2x reduction in migrations

Speedup

17

1.71

1.13

1.87

1.13

0.96 1.00 0.97

1.21

1.80

1.09
1.03

1.11
0.99 1.00 0.98

1.17

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

1 2 3 4 5 6 7 8

Speedup on Emu HW with Unrolling and Memory Access Scheduling

Series1 Series2

Up to 1.87x speedup

Conclusion

18

Benefits Cost & Challenges

• Identify & group co-located accesses

• Reduce thread migrations

• Register pressure, spills

• Compile time overhead

• Indirect accesses, pointers

Thank You

CONTACT: SDAMANI@GATECH.EDU

19

mailto:Sdamani@gatech.Edu

