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Migrate small 
thread context 
instead of data.

Applications with weak data locality:
• Graph algorithms
• Sparse matrix applications
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Redundant Thread Migrations
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Memory Access Scheduling
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Memory Access Scheduling

Migrating threads instead of data helps applications with weak data locality

Redundant thread migrations result in slowdowns

Memory access scheduling:
◦ Identify and group co-located accesses to reduce thread migrations

◦ Maintain dependences
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Design: Analysis

Goal: Identify co-located accesses

◦ Layout analysis:
◦ A: 1D

◦ Stride analysis:
◦ A[1], A[9]: nodelet 1
◦ A[2]: nodelet 2

◦ Dependence graph
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Design: Transform

Goal: Memory Access Scheduling to group co-located accesses

◦ Integer Linear Programming

◦ Greedy Scheduler
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Interaction with Loop Unrolling

for (int i = 0; i < N; i++) 
{

for (int j = 0; j < N; j++)
{

S1: LD A[i][j]   // N0
S2: LD B[j]       // N1

}
}
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for (int i = 0; i < N; i++) 
{

for (int j = 0; j < N; j+=2)
{

LD A[i][j]      // N0
LD B[j]          // N1
LD A[i][j+1] // N0
LD B[j+1]     // N2

}
}

for (int i = 0; i < N; i++) 
{

for (int j = 0; j < N; j+=2)
{

LD A[i][j]      // N0
LD A[i][j+1] // N0
LD B[j]          // N1    
LD B[j+1]     // N2

}
}

Base
2N*N

Loop Unroll
2N*N

Memory Access Scheduling
3/2*N*N



Experimental Setup
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Performance Metric Thread Migrations, Speedup

EMU Configuration 1 Node, 8 Nodelets

Per-Thread Registers 16

Compiler LLVM-Cilk

Migration Profiling emusim

Applications Linear Algebra, Polybench

Unroll factor 2



Reduction in Migrations
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Speedup
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Conclusion

18

Benefits Cost & Challenges

• Identify & group co-located accesses

• Reduce thread migrations

• Register pressure, spills

• Compile time overhead

• Indirect accesses, pointers



Thank You

CONTACT: SDAMANI@GATECH.EDU
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