Memory Access Scheduling
to Reduce Thread Migrations

SANA DAMANI, PRITHAYAN BARUA, VIVEK SARKAR
HABANERO EXTREME SCALE SOFTWARE RESEARCH LABORATORY
GEORGIA INSTITUTE OF TECHNOLOGY
HTTP://HABANERO.CC.GATECH.EDU

http://habanero.cc.gatech.edu/

EMU Architecture

Memory Memory Memory Memory Memory Memory Memory Memory

Migrate small

| | | | | | | |
thread context Nodelet Nodelet Nodelet Nodelet Nodelet Nodelet Nodelet Nodelet

instead of data. 0 1 2 3 4 5 _6 __J

———

Stationary Core Migration Engine

EMU NODE
Applications with weak data locality:

e Graph algorithms
e Sparse matrix applications

http://lucata.com

https://lucata.com/

Suboptimal Thread Migrations

S1: LD A[1] Memory Memory Memory Memory Memory Memory Memory Memory
S2: LD A[2] A[O] Al1] Al2] A[3] Al4] A[5] Al6] Al7]
A[8] A[9] A[10] A[11] A[12] A[13] A[14] A[15]
. | | | | | | | |
53: LD A[9] Nodelet Nodelet Nodelet Nodelet Nodelet Nodelet Nodelet Nodelet
0 1 2 3 4 5 6 7/

W

Stationary Core Migration Engine

EMU NODE

Suboptimal Thread Migrations

S1: LD A[1]
S2: LD A[2]

S3: LD A[9]

Memory Memory Memory Memory Memory Memory Memory
A[O] Al2] A[3] Al4] A[5] Al6] Al7]
A[8] A[10] A[11] A[12] A[13] A[14] A[15]

| | | | | | |
Nodelet Nodelet Nodelet Nodelet Nodelet Nodelet Nodelet Nodelet

0

1

2

4

5

6

7

Stationary Core

Migration Engine

EMU NODE

Suboptimal Thread Migrations

S1: LD A[1]
S2: LD A[2]

S3: LD A[9]

Memory Memory Memory Memory Memory Memory Memory
A[O] Al1] A[3] Al4] A[5] Al6] Al7]
A[8] A[9] A[11] A[12] A[13] A[14] A[15]

| | | | | | |
Nodelet Nodelet Nodelet Nodelet Nodelet Nodelet Nodelet Nodelet
0 1 2 3 4 5 6 7/

Stationary Core

Migration Engine

EMU NODE

Redundant Thread Migrations

$1: LD A[1] Memory Memory Memory Memory Memory Memory Memory

Co2- 1N AlN] AlN1] Al2] Al3] AlAl AlS] AlR] Al71

3 Migrations

J

Stationary Core Migration Engine

EMU NODE

Memory Access Scheduling

S1: LD A[1]
S3: LD A[9]

S2: LD A[2]

0

1

Stationary Core

2

4

5

6

Memory Memory Memory Memory Memory Memory Memory
Al1] Al2] A[3] Al4] A[5] Al6] Al7]
A[9] A[10] A[11] A[12] A[13] A[14] A[15]
| | | | | | |
Nodelet Nodelet Nodelet Nodelet Nodelet Nodelet Nodelet Nodelet

7

Migration Engine

EMU NODE

Memory Access Scheduling

S1: LD A[1]
S3: LD A[9]

S2: LD A[2]

0

1

Stationary Core

2

4

5

6

Memory Memory Memory Memory Memory Memory Memory
A[O] Al2] A[3] Al4] A[5] Al6] Al7]
A[8] A[10] A[11] A[12] A[13] A[14] A[15]

| | | | | | |
Nodelet Nodelet Nodelet Nodelet Nodelet Nodelet Nodelet Nodelet

7

Migration Engine

EMU NODE

Memory Access Scheduling

S1: LD A[1]
S3: LD A[9]

S2: LD A[2]

0

1

Stationary Core

2

4

5

6

Memory Memory Memory Memory Memory Memory Memory
A[O] Al2] A[3] Al4] A[5] Al6] Al7]
A[8] A[10] A[11] A[12] A[13] A[14] A[15]

| | | | | | |
Nodelet Nodelet Nodelet Nodelet Nodelet Nodelet Nodelet Nodelet

7

Migration Engine

EMU NODE

Memory Access Scheduling

S1: LD A[1] Memory Memory Memory Memory Memory Memory Memory

C2.- 1N AlQ] AlN1] Al1] Al3] AlAl AlS] AlR] Al71

2 Migrations

J

Stationary Core Migration Engine

EMU NODE

Memory Access Scheduling

Migrating threads instead of data helps applications with weak data locality

Redundant thread migrations result in slowdowns

Memory access scheduling:
o |dentify and group co-located accesses to reduce thread migrations

> Maintain dependences

Design: Analysis

Goal: Identify co-located accesses

o Layout analysis:
o A:1D

o Stride analysis:
o A[1], A[9]: nodelet 1
o A[2]: nodelet 2

o Dependence graph

T

Design: Transform

Goal: Memory Access Scheduling to group co-located accesses

o Integer Linear Programming

o Greedy Scheduler

T

Interaction with Loop Unrolling

__

for (inti=0;i<N;i++)

i { i i for (intj=0;j<N; j+=2) i i for (intj=0;j<N; j+=2) i
| for (intj=0;j<N; j++) | | { 6 //No i | { —_— i
o N LD A[i][] N N LD A[i][] NO |
i S1: LD A[i][j] // NO ;#i LDB[] //N1 :-i LD A[i][j+1] // NO :
| S2:LDB[l //N1 1} LD A[i][j+1] // NO i | LD B[j] // N1 i
|) } o LD B[j+1] // N2 o LD B[j+1] // N2 |
e)) |
)) i
Base Loop Unroll Memory Access Scheduling
2N*N 2N*N 3/2*N*N

Experimental Setup

Performance Metric Thread Migrations, Speedup
EMU Configuration 1 Node, 8 Nodelets
Per-Thread Registers 16

Compiler LLVM-Cilk

Migration Profiling emusim

Applications Linear Algebra, Polybench
Unroll factor 2

Migration Reduction Factor with Memory Access Scheduling
2.50

1.99 1.99
2.00
1.66 160 -
1.48 1.4
1.50 1.43 1.4
1.2
1.13
1.00
1.00
0.5 II I
0.00
1 2 3 4 5 6 7 8

B Seriesl M Series2

o

Reduction in Migrations

2.00
1.80
1.60
1.40
1.20
1.00
0.80
0.60
0.40
0.20
0.00

Speedup on Emu HW with Unrolling and Memory Access Scheduling

1.80
1.71 |
1

Speedup

1.13 4 g9

2

1.87

1.131.11

4

B Seriesl M Series2

1.00 1.00

6

0.97 0.98

7

1.21 9 97

8

Conclusion

Benefits Cost & Challenges

e |dentify & group co-located accesses |* Register pressure, spills
* Reduce thread migrations * Compile time overhead

* Indirect accesses, pointers

Thank You

CONTACT: SDAMANI@GATECH.EDU

T

mailto:Sdamani@gatech.Edu

