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Applications with weak data locality:

e Graph algorithms
e Sparse matrix applications
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Suboptimal Thread Migrations
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Suboptimal Thread Migrations
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Suboptimal Thread Migrations
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Redundant Thread Migrations

$1: LD A[1] Memory Memory Memory Memory Memory Memory Memory
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Memory Access Scheduling
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Memory Access Scheduling
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Memory Access Scheduling
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Memory Access Scheduling

S1: LD A[1] Memory Memory Memory Memory Memory Memory Memory
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Memory Access Scheduling

Migrating threads instead of data helps applications with weak data locality

Redundant thread migrations result in slowdowns

Memory access scheduling:
o |dentify and group co-located accesses to reduce thread migrations

> Maintain dependences




Design: Analysis

Goal: Identify co-located accesses

o Layout analysis:
o A:1D

o Stride analysis:
o A[1], A[9]: nodelet 1
o A[2]: nodelet 2

o Dependence graph
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Design: Transform

Goal: Memory Access Scheduling to group co-located accesses

o Integer Linear Programming

o Greedy Scheduler
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Interaction with Loop Unrolling

______________________________________________________________

for (inti=0;i<N;i++)

i { i i for (intj=0;j<N; j+=2) i i for (intj=0;j<N; j+=2) i
| for (intj=0;j<N; j++) | | { 6 //No i | { —_— i
o N LD A[i][] N N LD A[i][] NO |
i S1: LD A[i][j] // NO ;#i LDB[]  //N1 :-i LD A[i][j+1] // NO :
| S2:LDB[l  //N1 1} LD A[i][j+1] // NO i | LD B[j] // N1 i
| ) } o LD B[j+1] // N2 o LD B[j+1] // N2 |
e ) ) |
) ) i
Base Loop Unroll Memory Access Scheduling
2N*N 2N*N 3/2*N*N




Experimental Setup

Performance Metric Thread Migrations, Speedup
EMU Configuration 1 Node, 8 Nodelets
Per-Thread Registers 16

Compiler LLVM-Cilk

Migration Profiling emusim

Applications Linear Algebra, Polybench
Unroll factor 2




Migration Reduction Factor with Memory Access Scheduling
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Conclusion

Benefits Cost & Challenges

e |dentify & group co-located accesses |* Register pressure, spills
* Reduce thread migrations * Compile time overhead

* Indirect accesses, pointers
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