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Abstract
It has been widely observed that data movement is emerg-

ing as the primary bottleneck to scalability and energy ef-

ficiency in future hardware, especially for applications and

algorithms that are not cache-friendly and achieve below

1% of peak performance on today’s systems. The idea of

“moving compute to data” has been suggested as one ap-

proach to address this challenge. While there are approaches

that can achieve this migration in software, hardware sup-

port is a promising direction from the perspectives of lower

overheads and programmer productivity. Migratory thread
architectures migrate lightweight hardware thread contexts

to the location of the data instead of transferring data to the

requesting processor. However, while transporting thread

contexts is cheaper than moving data, thread migrations still

incur energy and bandwidth overheads and can be particu-

larly expensive if threads frequently migrate in a ping-pong

manner between processors due to poor locality of access.

In this paper, we propose Memory Access Scheduling, a

new compiler optimization that aims to reduce the number

of overall thread migrations when executing a program on

migratory thread architectures. Our experiments show per-

formance improvements with a geometric mean speedup

of 1.23× for a set of 7 explicitly-parallelized kernels, and

of 1.10× for a set of 15 automatically-parallelized kernels.

We believe that memory access scheduling will also be an

important optimization for other locality-centric architec-

tures that benefit from software thread migrations, such as

multi-threaded NUMA architectures.

CCSConcepts: •Computer systems organization→Dis-
tributed architectures; Multicore architectures.
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1 Introduction
Migratory thread architectures such as Emu [4] reduce mem-

ory bandwidth, latency, and energy utilization by migrating

lightweight thread contexts to lightweight near-memory pro-

cessors (called "nodelets") instead of transferring blocks of

data to a requesting processor. When a thread encounters a

memory read, the hardware checks if the data is available on

the current nodelet. If the data is not on the current nodelet,

the hardware migrates the thread to the nodelet that holds

the requested address. This approach works well for data-

intensive applications with weak locality [13], such as graph

analysis, data analytics, and machine learning. However, in

some cases, a thread may request data from nodelets in an

alternating manner, resulting in a thread migration on every

access. To study the cost of thread migration, we wrote two

microbenchmarks with a single thread that reads data from

(1) a replicated array, and (2) a distributed array. We found

that the first microbenchmark with 0 migrations ran 15.7×
faster on an Emu processor than the second microbench-

mark with 100, 000 migrations. The cost per-migration is

approximately 272 clock cycles, which can be a significant

overhead if incurred for a large number of read operations.

1 // allocate arrays

2 long *values = mw_malloc1dlong(N);

3 long *x = mw_malloc1dlong(N);

4 long *colind = mw_malloc1dlong(N);

5 ...

6 for (i = 1 to N) {

7 sum = 0;

8 for (j = rowptr[i] to rowptr[i+1]) {

9 sum += values[j] * x[colind[j]];

10 }

11 y[i] = sum;

12 }

Listing 1. Sparse Matrix Vector Multiply
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(a) Baseline: 3 migrations per iteration

(b) Memory Access Scheduling: 2 migrations per iteration

Figure 1. Thread migrations in SpMV

In this paper, we introduce a new compiler optimization

for migratory thread architectures called Memory Access
Scheduling. Our optimization statically identifies co-located

memory accesses and groups them together to reduce the

number of thread migrations.

We use the sparse matrix-vector multiplication (SpMV)

code from Listing 1 as a running example. The function

mw_malloc1dlong distributes arrays across nodelets in a

round-robin manner starting from Nodelet 0 (see Figure 3).
Hence, values[j] and colind[j] are always on the same nodelet.

The location of x[colind[j]] cannot be statically determined,

so we conservatively assume that it will result in a migration.

Data layouts are further described in Section 2.3.

Table 1. SPMV codegen with Memory Access Scheduling

(a) Baseline (b) Optimized

/ / m i g r a t e t o n o d e l e t 0
S1 : R0 = l oad c o l i n d [ j ] ;

/ / m i g r a t e t o n o d e l e t 3
S2 : R1 = l oad x [ R0 ] ;

/ / m i g r a t e t o n o d e l e t 0
S3 : R2 = l oad v a l u e s [ j ] ;

S4 : R3 = mul R2 , R1 ;

S5 : sum = add sum , R3 ;

/ / m i g r a t e t o n o d e l e t 0
S1 : R0 = l oad c o l i n d [ j ] ;

S3 : R2 = l oad v a l u e s [ j ] ;

/ / m i g r a t e t o n o d e l e t 3
S2 : R1 = l oad x [ R0 ] ;

S4 : R3 = mul R2 , R1 ;

S5 : sum = add sum , R3 ;

Table 1(a) shows the code generated for line 9 and Figure

1(a) illustrates the execution of a single iteration of the SpMV

loop. We observe that in the base case, there are (at most)

three migrations in each iteration of the inner loop resulting

in 3𝑁 2
total migrations. Table 1(b) shows the code gener-

ated after memory access scheduling, which groups together

accesses from the same nodelet as much as possible, before

executing a migration-inducing instruction. The modified

schedule has a maximum of two migrations per iteration of

the inner loop resulting in 2𝑁 2
total migrations, a reduction

of 33% (see Figure 1(b)). Simulator studies show that total

migrations for the SpMV application reduced from 2.2𝑀 to

1.3𝑀 migrations with the modified schedule. The remain-

der of this paper describes how our scheduler identifies and

reorders co-located memory accesses.

Our contributions include:

• A novel static analysis, which tracks data layouts and

identifies co-located memory accesses.

• Formalization of memory access scheduling as a se-

quential ordering problem.

• An ILP-based scheduler that reorders instructions to

minimize the number of thread migrations.

• An alternate heuristic-based greedy scheduler with

lower compile-time overhead relative to the ILP-based

scheduler.

• An implementation of our approach in LLVM and

experimental results that measure the impact of our

schedulers in terms of thread migrations and perfor-

mance improvement on Emu hardware.

2 Background
2.1 Emu Architecture
The basic unit of processing in the Emu architecture is a

nodelet (shown in Figure 2a) [4]. A nodelet consists of mul-

tiple gossamer cores, general-purpose pipelined processors
that execute threads, a nodelet queue manager that handles
thread scheduling and migration, a memory front-end that

handles memory transactions, and a portion of the global

address space. A group of 8 nodelets along with a migration
engine, a cross-bar that migrates threads from the source

nodelet to destination nodelet, and a stationary core forms

a node (see Figure 2b). An Emu system may have multiple

connected nodes. The architecture has no memory hierarchy

and all accesses reference a global memory address space.

When a thread running on a nodelet executes a memory

fetch instruction, the hardware first checks if the requested

data is present on the current nodelet. If not, the hardware

migrates the thread context to the nodelet that holds the re-

quested data. Hence, threads migrate automatically without

programmer intervention. A thread context is compact, con-

sisting of a thread status word and address and data registers

[4]. The program itself is maintained in replicated memory

and can be accessed from any nodelet, and does not need

to be transferred with the thread context. Hence, thread mi-

gration on the Emu is a cheap operation, but as described

in section 1, it can still become a performance bottleneck.

145



Memory Access Scheduling to Reduce Thread Migrations CC ’22, April 02–03, 2022, Seoul, South Korea

(a) Emu Nodelet

(b) Emu Node

Figure 2. Emu Architecture [4]

2.2 Emu Programming Model
Emu uses the Cilk programming model with the following

extensions to C [9]:

• cilk_spawn creates a new child thread that can execute

in parallel with the parent. A parent can optionally

spawn a child on a remote nodelet with a migrate hint.

• cilk_sync forces the parent to wait for all its spawned

children to finish execution before proceeding.

• cilk_for spawns new threads for each iteration of a for

loop, which can execute in parallel, and then waits for

all the iterations to complete.

2.3 Data Allocation

Emu-Cilk provides the following functions for dynamic allo-

cation of data structures distributed across nodelets [6].

• mw_localmalloc(N, ptr) allocates memory of size N on

the same nodelet as ptr.

• mw_mallocrepl(N) allocates memory of size N on each

nodelet [21]. A copy of a replicated data structure can

be found on each nodelet.

• mw_malloc1dlong(N) allocates a 1D array of N long ele-

ments striped across nodelets in a round-robin manner

starting at nodelet 0 (see Figure 3a).

• mw_malloc2d(B, N) allocates a 2D array of B blocks of

N elements each. The blocks are striped across nodelets

in a round-robin manner starting at nodelet 0, whereas

elements within a block are co-located on a single

nodelet (see Figure 3b for an example with B=4).

(a) mw_malloc1dlong()

(b) mw_malloc2d()

Figure 3. Data Allocation.

2.4 Other Migratory Thread Systems
In Non-Uniform Memory-Access (NUMA) systems, the data

access latency depends on where the data is located rela-

tive to where the access is being performed. NUMA-aware

operating systems aim to co-locate data with the threads

that access them as much as possible, so as to minimize this

latency. A NUMA variant that migrates threads on remote

accesses was shown by Li et al. to be up to 2x faster than

data shuffling in past work [11].

Earlier, Rogers et al. proposed using thread migration as

an enabler for automatic parallelization of programs that use

dynamic data structures on distributed-memory multiproces-

sors, so as to handle the problem of ensuring that all thread

accesses are local when the layout is statically unknown [16].

Contemporaneously, Jenks and Gaudiot proposed the No-

madic Threads run-time system [8]. Similar to Emu threads,

a Nomadic thread transfers to the processor that contains

data that it requires instead of fetching data from the remote

processor with the goal of reducing messages and exploiting

locality of access within the target processor.

Our approach to Memory Access Scheduling should be ap-

plicable to all such migratory thread approaches, in addition

to the Emu system studied in this paper.

3 Approach
We define co-located memory accesses as accesses to ad-

dresses that are statically known to reside on the same nodelet

and would not cause a thread migration when issued con-

secutively. This includes (1) accesses to replicated memory

which never result in a migration, (2) accesses to multiple

elements of the same block of a 2D array allocated bymwmal-

loc2d(), and (3) accesses to a 1D array allocated by mw mal-

loc1dlong() with a stride that equals the number of nodelets.

Co-located memory accesses represent a different form of

locality than traditional cache-based spatial or temporal lo-

cality. Co-located accesses may not reside in the same block

of memory and may never be reused. However, grouping
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together co-located data accesses reduces thread migration.

Co-location is a symmetric relation because the order of the

memory references does not impact the result.

Our goal then is to identify co-located memory accesses

and reorder them to minimize the number of thread migra-

tions while respecting data and control dependencies. We

call this the Memory Access Scheduling problem. We pro-

pose a three-step solution to this problem. First, we identify

and propagate data layout information for each memory

access through a dataflow analysis we call Layout Analysis
described in Section 3.1. Next, we use data layout and array

index information to identify co-located memory accesses by

a process we call Stride Analysis (see Section 3.2. Finally, we

reorder instructions to minimize thread migrations by group-

ing together co-located accesses using an ILP-based (Section

3.3) and a heuristic-based instruction scheduler (Section 3.4).

3.1 Layout Analysis
The Layout Analysis pass determines how consecutive ele-

ments of an array are allocated across the nodelets. For our

analysis, we consider the following kinds of data allocation:

• Local: The array is allocated on the local memory of

the nodelet where the requesting thread is running.

• Co-located: The array is allocated on the same nodelet

as another pointer using mw_localmalloc().
• 1D: The array is striped across nodelets.

• 2D: The array is block striped across nodelets.

• Replicated: A copy of the data element resides on

each nodelet.

Figure 4. Lattice for layout analysis

The Layout Analysis pass is an interprocedural dataflow

analysis pass that first traverses all functions in the module

to propagate the layout of each pointer or array variable

within the function and then propagates the layouts across

functions. Algorithm 1 describes our dataflow analysis over

the lattice shown in Fig 4.

Once we know the layout of each variable based on the in-

traprocedural analysis, we propagate this information across

function calls using a flow-sensitive and context-insensitive

interprocedural analysis. At each of the call sites, if the lay-

out of the arguments in the caller function is determined by

the intraprocedural analysis, then we propagate the layout

Algorithm 1: Intraprocedural Layout Analysis: DFA
1 Domain: {𝑙𝑜𝑐𝑎𝑙, 𝑐𝑜𝑙𝑜𝑐𝑎𝑡𝑒𝑑, 1𝐷, 2𝐷, 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑑}
2 Direction: 𝑓 𝑜𝑟𝑤𝑎𝑟𝑑

3 ⊤ = Memory layout not yet determined. This is the initial

value, i.e., the empty set {}.
4 ⊥ = Memory layout cannot be determined. This is the

universal set.

5 Meet Operation: ∧ on the Lattice as shown in Figure 4

6 Transfer function: given instruction

𝑑𝑠𝑡 = 𝐼𝑛𝑠𝑡𝑟 (𝑜𝑝1, 𝑜𝑝2),
𝐿𝑎𝑦𝑜𝑢𝑡 (𝑑𝑠𝑡) = 𝐿𝑎𝑦𝑜𝑢𝑡 (𝑜𝑝1) ∧ 𝐿𝑎𝑦𝑜𝑢𝑡 (𝑜𝑝2)

7 ∀𝑥
• 𝑥 ∧ ⊤ = 𝑥

• 𝑥 ∧ ⊥ = ⊥
• 𝑐1 ∧ 𝑐2 = ⊥, if 𝑐1 ≠ 𝑐2

to the callee function parameters, by applying the Meet(∧)
operator, 𝐿𝑎𝑦𝑜𝑢𝑡 (𝑝𝑎𝑟𝑎𝑚) = 𝐿𝑎𝑦𝑜𝑢𝑡 (𝑝𝑎𝑟𝑎𝑚) ∧ 𝐿𝑎𝑦𝑜𝑢𝑡 (𝑎𝑟𝑔).
On the other hand, if only the layout of the parameters of the

callee function is determined by the intraprocedural analysis

and the argument layout is unknown, then 𝐿𝑎𝑦𝑜𝑢𝑡 (𝑎𝑟𝑔) =
𝐿𝑎𝑦𝑜𝑢𝑡 (𝑝𝑎𝑟𝑎𝑚). The analysis also propagates the layout of

the return value is across the def-use chain of the result of

the call statement in the caller function. The interprocedural

analysis iterates until convergence, that is, until there are

no more updates to the layout information. Convergence

is guaranteed by the monotonicity of the transfer function.

Finally the layout analysis infers the memory layout for each

variable in the program.

3.2 Stride Analysis
Next, we use layout and array index information to de-

termine whether a pair of migration-inducing memory ac-

cesses is co-located. For our purposes, we define a migration-

inducingmemory access as one that could potentially require

a thread migration. This includes memory reads and atom-

ics from non-replicated data structures. We propose Stride
Analysis, a pass that determines the distance between two

memory accesses depending on the distribution of the array

in memory and the offset into the array. Our analysis relies

on the basic assumption that the base address of an array

is on nodelet 0 in node 0. The offset from the base address,

therefore, decides the nodelet of each element.

Given two memory references, we define stride as the

relative distance between two migration-inducing memory

accesses in terms of nodelets.

• Case 1: Both accesses have a 1D layout.

Consecutive elements are located on adjacent nodelets

and striped across all nodelets in a round-robin fashion.

Hence, the stride between the two accesses is simply

the absolute difference between their offsets:

𝑠𝑡𝑟𝑖𝑑𝑒 (𝐴[𝑖1], 𝐵 [𝑖2]) = |𝑖1 − 𝑖2 |

• Case 2: Both accesses have a 2D layout.
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Consecutive rows are on adjacent nodelets so that all

elements of a row are on the same nodelet. Hence, the

stride is computed using the difference between the

row offsets and is independent of the column offset:

𝑠𝑡𝑟𝑖𝑑𝑒 (𝐴[𝑖1] [ 𝑗1], 𝐵 [𝑖2] [ 𝑗2]) = |𝑖1 − 𝑖2 |
• Case 3: A has a 1D layout and B has a 2D layout.

𝑠𝑡𝑟𝑖𝑑𝑒 (𝐴[𝑖1], 𝐵 [𝑖2] [ 𝑗2]) = |𝑖1 − 𝑖2 |
• Case 4: They were allocated on the same nodelet using

mw_localmalloc().

𝑠𝑡𝑟𝑖𝑑𝑒 (𝑎, 𝑏) = 0

• Otherwise:

𝑠𝑡𝑟𝑖𝑑𝑒 (𝑎, 𝑏) = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛

Finally, we use stride information to determine if any

pair of memory references ⟨𝑀1, 𝑀2⟩ is co-located. Two non-

replicated memory accesses ⟨𝑀1, 𝑀2⟩ are co-located if their

addresses are separated by some multiple of total nodelets,

i.e.,

𝑠𝑡𝑟𝑖𝑑𝑒 (𝑀1, 𝑀2) = 𝑛𝑢𝑚_𝑛𝑜𝑑𝑒𝑙𝑒𝑡𝑠 ∗ 𝑘
for some 𝑘 ∈ 𝑍 .

3.3 ILP-Based Scheduler

Figure 5. SpMV: Memory Access Scheduling as Sequential

Ordering Problem. Vertices shaded the same color are co-

located memory accesses. Uncolored vertices represent non

migration-inducing instructions. The solid arrows represent

data dependences while the dotted arrows represent aug-

mented dependences added by the ILP solver. The undirected

weighted edges illustrated by dashed lines represent the cost

of migration between nodes.

Given a directed acyclic graph 𝐺 = (𝑉 , 𝐸) with a set of

nodes 𝑉 , edges 𝐸 that represent precedence relations be-

tween the nodes, and a distance matrix, a sequential ordering

of the nodes is a minimum length path that visits each node

exactly once and does not violate precedence constraints [5].

We represent the memory access scheduling problem as a

variation of the NP-hard sequential ordering problem [5] on

Algorithm 2: ILP Formulation

1 Parameters
• 𝑛 = number of migration-inducing instructions

• 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖 𝑗 =

{
0, if i, j are on the same nodelet

1, otherwise

• 𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒𝑖 𝑗 =

{
1, if j depends on i

0, otherwise

Decision Variables
• 𝑇𝑖 , time at which instruction i is scheduled

ObjectiveMinimize number of migrations,

𝑛∑
𝑖=0

𝑛∑
𝑗=0

(𝑇𝑖 = 𝑇𝑗 − 1) ∗ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖 𝑗

Constraints
• All instructions must be scheduled, i.e.,

∀𝑖, 1 ≤ 𝑇𝑖 ≤ 𝑛

• Data dependences must be maintained, i.e.,

𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒𝑖 𝑗 = 1 =⇒ 𝑇𝑖 ≤ 𝑇𝑗
• Only one instruction may be scheduled at a time, i.e.,

𝑖 ≠ 𝑗 =⇒ 𝑇𝑖 ≠ 𝑇𝑗

the migratory dependence graph of a program, where nodes

represent migration-inducing memory access instructions,

directed edges represent data and control dependencies be-

tween instructions, and the distance between each pair of

nodes, 𝐼1 and 𝐼2, is given by the migration cost of scheduling

𝐼1 and 𝐼2 consecutively:

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝐼1, 𝐼2) =
{
0, 𝐼1 and 𝐼2 are co-located

1, 𝐼1 and 𝐼2 are non-co-located

A sequential ordering of the resultant graph, called the

Migration Dependence Graph, generates a schedule that

minimizes thread migrations and maintains data and control

dependences. Figure 5(b) shows the migration dependence

graph corresponding to the SpMV example from Listing

1. Algorithm 2 shows our proposed ILP formulation. Our

formulation has 𝑂 (𝑛2) variables and 𝑂 (𝑛2) constraints.
We now describe the overall instruction scheduling algo-

rithm to minimize migrations using the sequential ordering

problem (see Algorithm 3).

As a first step, we build a Migration Dependence Graph
with nodes representing migration-inducing instructions

and directed edges between nodes representing direct or in-

direct dependencies. Next, we use layout and stride analysis

(described in Sections 3.1 and 3.2) to determine distances

between each pair of nodes in the Migration Dependence

Graph. We then pass this Migration Dependence Graph as

an input to an ILP solver for the sequential ordering prob-

lem described in Algorithm 3. The solver returns an optimal
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ordering for the memory access instructions in the Migra-

tion Dependence Graph. To maintain the sequential ordering

generated by the solver in the final schedule, we augment

the original dependence graph of the program with false
dependencies. If instruction 𝐼1 was scheduled before 𝐼2 in the

sequential ordering, we add an edge from 𝐼1 −→ 𝐼2 in the Aug-
mented Dependence Graph. Finally, we perform a topological

sort on the instructions in the augmented dependence graph,

which optimally orders memory accesses while maintaining

original dependencies in the program. Figure 5(c) shows the

augmented dependence graph for SpMV generated using

the ILPScheduler() detailed in Algorithm 3. A topological

ordering of the graph in Figure 5(c) results in the optimized

schedule from 1(b).

Correctness: Our instruction scheduler does not move

instructions across sync/lock instructions. Further, the topo-

logical ordering of instructions maintains all data depen-

dences. Hence, reordering instructions within a thread does

not introduce data race conditions or affect the correctness

of the program.

Theorem. The augmented dependence graph is a DAG, i.e.,
there are no cycles in the augmented dependence graph, and
the program has a valid schedule.

Proof. We know that the original dependence graph has no

cycles. Assume that the augmented graph does contain a

cycle due to a newly added edge from node A to B. For a

cycle to exist, there must be a path from node B to A. This

path was either an actual dependence from B to A or an

augmented edge introduced by the ILP solver.

If there were a dependence from B to A in the original

dependence graph, the sequential ordering would respect

precedence and schedule B before A in the final schedule

by definition. If, on the other hand, B to A contains an aug-

mented edge, then the sequential ordering contains a cycle.

In either case, a cycle results in a contradiction. ■

Algorithm 3: ILPScheduler
Input: NodeletMap, DependenceGraph

Output: Schedule of instructions
1 𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑖𝑒𝑠 ← 𝐶𝑎𝑙𝑐𝑀𝑒𝑚𝐷𝑒𝑝𝑠 (𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒𝐺𝑟𝑎𝑝ℎ);
2 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 ← 𝐶𝑎𝑙𝑐𝑀𝑒𝑚𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 (𝑁𝑜𝑑𝑒𝑙𝑒𝑡𝑀𝑎𝑝);
3 𝑇 ← 𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙𝑂𝑟𝑑𝑒𝑟𝑖𝑛𝑔(𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑖𝑒𝑠, 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠);
4 𝐴𝑢𝑔𝑚𝑒𝑛𝑡𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒𝐺𝑟𝑎𝑝ℎ(𝑇, 𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒𝐺𝑟𝑎𝑝ℎ);
5 𝑇𝑜𝑝𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙𝑆𝑜𝑟𝑡 (𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒𝐺𝑟𝑎𝑝ℎ);

3.4 Heuristic Scheduler

We now describe a heuristic-based list scheduling algorithm

(algorithm 4) that uses a greedy approach to reduce the num-

ber of migrations in the program in polynomial time.

Algorithm 4: Heuristic Scheduler: A list scheduler

that groups co-located memory access instructions.

Input: NodeletMap, DependenceGraph

Output: Schedule of instructions
1 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← −1;
2 while some instructions not scheduled do
3 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 ← 𝐹𝑎𝑙𝑠𝑒;

// schedule non-migrating instructions

4 for inst in all instructions do
5 if 𝑖𝑛𝑠𝑡 .𝑟𝑒𝑎𝑑𝑦 () ∧

(¬𝑖𝑛𝑠𝑡 .𝑚𝑒𝑚𝑜𝑟𝑦𝐴𝑐𝑐𝑒𝑠𝑠 () ∨ 𝑖𝑛𝑠𝑡 .𝑛𝑜𝑑𝑒𝑙𝑒𝑡 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
then

6 schedule(inst);

7 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 ← 𝑇𝑟𝑢𝑒;

// migrate to new nodelet

8 if ¬𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 then
9 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑀𝑖𝑔𝑟𝑎𝑡𝑒 ();

Figure 6. SPMV: Heuristic-based Scheduling.

As a first step, we build a dependence graph for the pro-

gram where nodes represent instructions and edges repre-

sent dependencies. Next, we use layout and stride analysis

(described in Sections 3.1 and 3.2) to group memory access

instructions on the same nodelet into supernodes, thereby

forming a Dependence Supergraph. Finally, we perform a

topological sort of the dependence supergraph, which tries

to schedule all instructions from one nodelet before migrat-

ing to a new nodelet. Arithmetic instructions and remote or

replicated memory accesses do not induce migrations and

may be scheduled whenever their operands are ready. Note

that this supergraph may have cycles if none of the nodelet

groups have all instructions ready to schedule, in which case

we select a ready instruction at random.

Figure 6 shows how the instructions in our SPMV program

from Listing 1 are scheduled using the HeuristicScheduler()

detailed in algorithm 4. Once again, it can be verified that a
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topological ordering of the supergraph in Figure 6(b) results

in the minimal-migration schedule from 1(b).

Figure 7. Emu Cilk Compiler Stack.

4 Implementation Details
Figure 7 shows the LLVM-based compilation flow for Emu

Cilk based on the OpenCilk compiler framework [19], ex-

tended with the memory access scheduler introduced in this

paper. The Clang front-end compiler first translates the pro-

gram to LLVM IR. The next stage performs optimizations

across threads [20] before the program passes to the Emu

code generation stage, which generates the final executable.

The compiler does not have an instruction scheduler and

the code generation phase largely maintains the original

order of instructions. We implemented all the analysis and

transformation passes described in section 3 in LLVM where

array access information is still available, and at the end of

all LLVM passes to avoid reordering of instructions after

memory access scheduling.

Layout Analysis. The Layout analysis determines the

memory layout of each variable using the algorithm de-

scribed in Section 3.1. During a breadth-first traversal over

basic blocks, the intraprocedural layout analysis, a Function
Pass in LLVM, computes the data layout of each variable

based on the allocation function used. Next, it propagates

the layout information across blocks using the transfer func-

tion defined in steps 6 and 7 of Algorithm 1. Finally, the

interprocedural layout analysis pass, an LLVM Module Pass,
propagates the layout information of parameters across func-

tion calls.

We illustrate our layout analysis using Listing 2. The anal-

ysis assigns a data layout to every LLVMValue. As a first step,

we initialize the layout of all values to⊤ (unknown). For each

call tomalloc(), we set the layout of the result to one of Local,
Co-located, 1D, 2D or Replicated based on the type of malloc

function called. In Listing 2, we set the layout of pointer p to
1D on line 2, and the layout of arg2 to 2D on line 14 and Repli-

cated on line 12. LLVM inserts a 𝜙−node to join the values

of arg2 from lines 12 and 14. We use the meet operation at

the 𝜙−node to obtain 𝐿𝑎𝑦𝑜𝑢𝑡 (𝑎𝑟𝑔2) = 2𝐷 ∧ 𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑑 = ⊥.
For each store instruction, we set the layout of the pointer

operand to the layout of the value operand. For all other in-

structions, the pass computes a join over all input operands

of the instruction to obtain the layout of the result.

The layout of all other pointers is still ⊤. In the first it-

eration of the interprocedural analysis, the callee function,

init(), propagates the layout of the parameter p to the corre-

sponding argument arg1 in the caller. In the second iteration,

the caller, emuLaunch(), propagates the layouts of arg1 to
the callee’s parameter, p1 and arg2 to p2. Finally, the analysis
propagates the layout of p1 within kernel() across its def-use
chain to array (line 5). At the end of the layout analysis pass,

the layout of p,arg1,p1,array is 1D and the layout of p2,arg2
is undetermined, or ⊥.
1 void init(long **p) {

2 *p = mw_malloc1dlong(n); // p:1D

3 }

4 void kernel(long *p1, long p2) { // p1:1D,p2:⊥
5 long *array = p1; // array:1D

6 ...

7 }

8 void emuLaunch () {

9 long *arg1 , *arg2; // arg1 ,arg2:⊤
10 init(&arg1); // arg1:1D

11 if (flag) {

12 arg2 = mw_mallocrepl(n); // arg2:Replicated

13 } else {

14 arg2 = mw_malloc1Dlong(n); // arg2:1D

15 }

16 // 𝜙 -node arg2: ⊥
17 kernel(arg1 , arg2);

18 }

Listing 2. Layout Analysis: An Example

Stride Analysis. The stride analysis pass uses layout in-
formation to assign an equivalence class to each variable.

Variables in the same equivalence class are co-located, i.e.,

there is no migration between two memory accesses in

the same equivalence class. The stride analysis pass (sec-

tion 3.2) identifies canonical patterns of 1D and 2D array

accesses in the LLVM IR. The pass does a breadth-first-

traversal over all instructions and assigns an equivalence

class to each pointer variable. Every pointer is initially as-

signed a unique equivalence class. In Listing 3, lines 3 and

6 correspond to the array accesses 𝐴𝑟𝑟𝑎𝑦1𝐷 [𝑖𝑛𝑑𝑒𝑥] and
𝐴𝑟𝑟𝑎𝑦1𝐷 [𝑖𝑛𝑑𝑒𝑥 + 𝑘] respectively for a 1D array. If 𝑘 is divis-

ible by the number of nodelets, i.e., 𝑘 % 𝑛𝑢𝑚_𝑛𝑜𝑑𝑒𝑙𝑒𝑡𝑠 () = 0,

then 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑐𝑒𝐶𝑙𝑎𝑠𝑠 (𝑙2) = 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑐𝑒𝐶𝑙𝑎𝑠𝑠 (𝑙1), that is,
the two array accesses are on the same nodelet.

Lines 11 and 16 represent accesses 𝐴𝑟𝑟𝑎𝑦2𝑑 [𝑖] [ 𝑗1] and
𝐴𝑟𝑟𝑎𝑦2𝑑 [𝑖+𝑘] [ 𝑗2], where𝐿𝑎𝑦𝑜𝑢𝑡 (𝐴𝑟𝑟𝑎𝑦2𝐷) = 2𝐷 . Since the

location of a 2D array access depends only on the row, l4 and

temp1 belong to the same equivalence class and l6 and temp2
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belong to the same equivalence class. Hence, a3 and a4 belong

to the same equivalence class if 𝑘 % 𝑛𝑢𝑚_𝑛𝑜𝑑𝑒𝑙𝑒𝑡𝑠 () = 0

(case 2 from section 3.2). Finally, our analysis decides that

accesses𝐴𝑟𝑟𝑎𝑦1𝐷 [𝑖𝑛𝑑𝑒𝑥] and𝐴𝑟𝑟𝑎𝑦2𝐷 [𝑖] [ 𝑗1] belong to the
same equivalence class if |𝑖𝑛𝑑𝑒𝑥 − 𝑖 |%𝑛𝑢𝑚_𝑛𝑜𝑑𝑒𝑙𝑒𝑡𝑠 () = 0

using case 4 from section 3.2.

1 // Array1D[index]

2 l1 = Array1D + index;

3 a1 = load l1;

4 // Array1D[index + k]

5 l2 = l1 + k;

6 a2 = load l2;

7 // Array2D[i][j1]

8 l3 = Array2D + i;

9 temp1 = load l3;

10 l4 = temp1 + j1;

11 a3 = load l4;

12 // Array2D[i+k][j2]

13 l5 = l3 + k;

14 temp2 = load l5;

15 l6 = temp2 + j2;

16 a4 = load l6;

Listing 3. Stride Analysis: An Example

ILP Scheduler Pass.Once we have computed co-location

information for all LLVM values in the program, the ILP

scheduler traverses all basic blocks in a function and iden-

tifies instructions that may induce a thread migration, in-

cluding non-replicated memory loads and atomic updates.

Replicated accesses and memory stores do not induce migra-

tions and are therefore ignored by the scheduler.

Next, we build a per-basic block dependence matrix for

migration-inducing instructions by extending the LLVM de-

pendence analysis pass such that 𝐷𝑒𝑝𝑖 𝑗 = 1 if 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑗

has a direct or indirect dependence on 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑖 . We fur-

ther build a per-block distance matrix where 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖 𝑗 = 1

if scheduling 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑗 after 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑖 will result in a

thread migration i.e. if the stride analysis assigned different

equivalence classes to the two instructions.

We feed the Distance and Dependence matrices to the ILP

Solver described in 2 which we implemented using IBM’s

IloCplex solver [3]. The solver returns the optimal schedule

of migration inducing memory access instructions in the

basic block so that the number of thread migrations are

minimized. We use the output of the ILP solver to build the

augmented dependence graph as described in 3.3.

Finally, we perform a topological sort on this augmented

dependence graph to generate an instruction schedule that

preserves the original dependencies and maintains the opti-

mal ordering of memory access instructions as determined

by the ILP solver.

5 Evaluation
This section describes the experimental setup and bench-

marks used, followed by a detailed analysis of the impact of

memory access scheduling on thread migrations, speedup,

and compile time. Table 2 summarizes the Emu Chick hard-

ware setup used in our experiments. As mentioned in Sec-

tion 2.2, this hardware supports the Emu Cilk programming

model.

All benchmarks discussed below were ported to Emu Cilk.

Each benchmark was compiled with and without memory

access scheduling enabled, and profiled on the Emu simulator

v20.06 [6] to count the number of thread migrations. We also

measured the actual performance impact on real hardware to

obtain the average kernel execution time with and without

memory access scheduling over three runs.

Table 2. Hardware Setup: Emu Chick Specifications [4]

Configuration 1 Emu Node (8 Nodelets)

Memory 64 GB

Per-Thread Registers 16

Storage 1TB Solid State Disks

Compute 12 Gossamer Cores

1 Stationary Core

Gossamer Core Clock Speed 150 MHz

System Interconnect Serial RapidIO (SRIO)

Table 3. Explicitly-parallelized kernels with sources

Benchmark Description
SpMV CSR CSR Sparse Matrix-Vector Multiply [14]

SpMV COO COO Sparse Matrix-Vector Multiply [14]

SpMM Sparse Matrix-Matrix Multiply [26]

Jacobi Simulation of thermal transmission [12]

Array Sort Quick Sort an array of elements [10]

Matrix Sort Sort elements in sparse matrix [10]

MRI-Q 3D MRI reconstruction [22]

Table 4. Compile Time

Benchmark Base (s) ILP (s) Heuristic (s)
SpMV CSR 1.11 1.47 1.437

SpMV COO 1.141 9.647 1.39

SpMM 1.265 1.336 1.303

Jacobi 1.230 1.533 1.271

Array Sort 1.247 1.356 1.284

Matrix Sort 1.768 1.983 1.804

MRI-Q 2.244 28.893 2.282

5.1 Performance Results
Table 3 lists the 7 explicitly-parallel kernels used in our

evaluation, along with their sources. These kernels used all

three Emu Cilk primitives listed in Section 2.2: cilk_spawn,
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(a) Migration Reduction Factors

(b) Speedup

Figure 8. Results: Explicitly-parallelized kernels.

cilk_sync, and cilk_for. Figure 8(a) shows the migration re-

duction factor
1
for each of the benchmarks, measured on

the simulator for both the ILP scheduler and the heuristic

scheduler. Figure 8(b) shows the corresponding speedup on

actual hardware with a single Emu node. The baseline for

all our experiments is the Emu LLVM-based compiler, using

the default compilation flags. We see that memory access

scheduling reduces migrations by up to 1.99× based on the

simulator, and resulted in a speedup on real hardware of

up to 1.87× with a geometric mean speedup of 1.23×. (ge-
omean max refers to the geometric mean of the maximum

speedup obtained by the ILP and heuristic schedulers, across

all benchmarks.)

We also evaluated our approach on a collection of 15

automatically-parallelized benchmarks from the Polybench

suite [15] using the standard dataset as input. Automatic

parallelization was performed using the PPCG compiler [24]

to obtain OpenMP code, which was converted to Emu Cilk

by replacing OpenMP parallel for loops by cilk_for loops. We

excluded benchmarks for which PPCG failed to parallelize

the loops. We used the loop unroll pragma to enable loop

unrolling by a factor of 2 in kernels that had an inner loop

over columns of a 2D array. The 15 benchmarks chosen were

those for which PPCG successfully generated parallel code

in our evaluation.

1
The migration reduction factor is the ratio of the original number of

migrations to the number of migrations after memory access scheduling.

Figure 9 shows the speedup for the automatically paral-

lelized Polybench benchmarks using memory access schedul-

ing on a single node configuration of the Emu hardware. Our

results show that memory access scheduling improves run-

time by up to 1.43× for these applications with a geometric

mean of 1.10×.

5.2 Analysis
Impact of Register Pressure. Some benchmarks showed

unexpected slowdowns, or lack of improvement, with mem-

ory access scheduling enabled. Upon further investigation, a

major contributor to this anomaly was the impact of instruc-

tion reordering on register pressure, which in some cases

resulted in increased execution time due to spill related mi-

grations. Note that a register spill that is inserted between

co-located memory accesses can result in two additional mi-

grations (to the spill location and back) when there would

be none in the absence of a spill. The examples with the

largest slowdowns were lu and syr2k in Figure 9, with ILP

Scheduler speedups of 0.87× and 0.94× respectively. Looking
at the generated code, we saw a 40% and 6% increase in static

spill-related instructions after memory access scheduling

respectively. We also studied the dynamic number of spill re-

lated migrations for lu and found that the percentage of spill

related migrations increased from 2% to 40% with memory

access scheduling. For jacobi, even though the number of

migrations decreased by a large factor, the overall speedup

wasn’t as high because of an increase in the number of mem-

ory access instructions. These results show that memory
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Figure 9. Polybench Speedup

Table 5. Impact of Loop Unrolling on Jacobi 2D

(a) Baseline:3𝑁 2
migrations (b) Unroll:1.5𝑁 2

migrations

Iteration 0:

// migrate

ld a[i][j];

ld a[i][j-1];

ld a[i][j+1];

// migrate

ld a[i-1][j];

// migrate

ld a[i+1][j];

Iteration 1:

// migrate

ld a[i][j+1];

ld a[i][j];

ld a[i][j+2];

// migrate

ld a[i-1][j+1];

// migrate

ld a[i+1][j+1];

Iteration 0:

// migrate

ld a[i][j];

ld a[i][j-1];

ld a[i][j+1];

ld a[i][j+1];

ld a[i][j];

ld a[i][j+2];

// migrate

ld a[i-1][j];

ld a[i-1][j+1];

// migrate

ld a[i+1][j];

ld a[i+1][j+1];

access scheduling is more effective for programs with low

register pressure or architectures with more thread registers.

It also motivates future work on integrating memory access

scheduling, instruction scheduling and register allocation,

following past work on combining instruction scheduling

with register allocation.

Impact of Loop Unrolling. To illustrate how loop un-

rolling can have an impact of memory access scheduling,

Table 5 shows the difference between memory access sched-

uling of the innermost loop of a 2D Jacobi kernel without

and with a 2× loop unrolling. The unrolled loop provides a

larger window of instructions to the scheduler which is able

to group co-located accesses across the two unrolled loop it-

erations. We see that the unrolled version has approximately

1.5𝑁 2
migrations compared to the original loop for which

the memory access scheduler generated code with 3𝑁 2
mi-

grations. Loop unrolling by a larger factor would allow for

grouping more co-located accesses across loop iterations,

thereby reducing the number of migrations further. For our

experiments, we empirically selected an unroll factor of 2

Figure 10.Migration Intensity

for both the baseline and optimized kernels. While a larger

unroll factor may expose more opportunity for grouping co-

located memory accesses across iterations, this increase in

opportunity comes at the cost of increased register pressure

resulting in register spills which, as discussed above, can

increase thread migrations rather than reducing them.

Heuristic scheduler vs. ILP scheduler. While we ex-

pect the ILP scheduler to generate an optimal schedule for

memory access instructions within a basic block, there are

cases where the heuristic scheduler outperforms the ILP

scheduler in practice (e.g., for CSR SPMV and gesummv)

because of accidental differences in spill instruction inter-

leaving which are not modeled by either algorithm. This also

motivates why we developed two schedulers, and recom-

mend using whichever one delivers better performance for

a given application.

Optimization Opportunity. As with other compiler op-

timizations, the impact of memory access scheduling de-

pends on the extent to which the underlying program is

bottlenecked by the overhead targeted by the optimization,

viz., thread migrations in this case. To better understand op-

timization opportunity, we computed the ratio of number of

migrations to execution time in the original program as ami-
gration intensity metric. Figure 10 shows this metric for the

explicitly-parallelized benchmarks. The three benchmarks

with the largest migration intensity are Jacobi, SPMM and
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CSR SPMV. Among these, memory access scheduling showed

large speedups of 1.87× and 1.71× for SPMM and CSR SPMV

respectively. However, the improvement for Jacobi was not

as large, though still respectable at 1.13×. This is because
of an increase in spill instructions in Jacobi due to which a

large (1.48×) migration reduction factor did not result in a

proportional improvement in execution time.

Compilation Time:We evaluated the compile time im-

pact of our pass by measuring the overall compilation time

for each of the benchmarks using the base compiler, the ILP

scheduler, and the heuristic scheduler. Table 4 shows that

while the ILP scheduler increases compile time by a factor

of two for COO SPMV and a factor of seven for the MRI-Q

benchmark, the compile-time for the remaining benchmarks

is comparable to that of the baseline compiler (within 1.5×).
The heuristic scheduler has compile-time within 1.2× of the

baseline compiler for all benchmarks we studied. For larger

blocks or higher unroll factors, we expect the ILP scheduler

to take significantly more time than the heuristic scheduler.

6 Related Work
Belviranli et al. proposed algorithm-level optimizations using

improved thread creation strategies and better data distribu-

tion at the program level to reduce thread migrations on the

Emu architecture [1]. Rolinger et al. addressed the problem

of thread migrations and load balancing in SpMV by opti-

mizing data layouts to allocate data blocks across nodelets,

so that memory access latency is reduced [17] [18]. Hein et

al. studied the impact of replication, remote writes, and data

layout transformations on reducing thread migrations [7].

Page proposed a prefiltering mechanism to avoid redundant

migrations [13]. These approaches rely on changing the al-

gorithm or data layout. On the other hand, our approach

automatically reorders memory accesses and can therefore

automatically reduce migrations across applications and can

handle multiple access patterns on the same data structures.

Another data layout optimization to reduce thread migra-

tions in bitonic sort was proposed by Velusamy et al. [23].

They use a dynamic data remapping strategy instead of a

static data layout to avoid remote memory accesses in their

work. However, this run-time remapping operation has an

associated runtime cost that memory access scheduling does

not incur. Chatarasi and Sarkar used traditional compiler

loop transformations to increase memory access locality,

such as loop fusion, to reduce thread migrations in graph ap-

plications on the Emu architecture [2]. We believe that such

loop transformations may also expose more opportunity for

memory access scheduling.

7 Conclusions
Near memory and distributed processors pose new chal-

lenges for code generation. In particular, we find that thread

migrations often become a performance bottleneck for irreg-

ular programswithweak locality of access.We propose a new

instruction scheduling approach that aims at minimizing re-

dundant thread migrations by grouping together co-located

memory accesses within the program. Unlike prior work,

our approach attacks the problem of redundant thread mi-

grations automatically within the compiler, without changes

to data layouts or to the algorithm. We propose both an opti-

mal ILP-based solution and an approximate greedy scheduler

with lower compile time overhead. Further, we combined

memory access scheduling with loop unrolling to increase

the scheduling window. Experimental evaluation on the Emu

hardware shows speedups of up to 1.87× with geometric

mean 1.23× for a set of explicitly-parallelized kernels and up
to 1.43× and a geometric mean of 1.10× for a set of automat-

ically parallelized kernels. Our findings suggest that kernels

bottlenecked on thread migrations and with relatively low

register pressure are ideal candidates for memory access

scheduling.

While static analysis of memory access co-location infor-

mation sufficed for the benchmarks studied, other programs

may benefit from run-time information regarding how of-

ten two accesses are co-located. Alternatively, multi-version

compilation may help in cases where static information does

not accurately determine co-location information. Further,

any improvements to dependence analysis and alias anal-

ysis will also increase the accuracy of our static analysis

pass. Traditional improvements to instruction scheduling,

including global scheduling and the introduction of a post-

register allocation scheduling pass may improve the overall

performance of memory access scheduling by increasing the

size of the scheduling window or by reducing the impact of

spill-related migrations, respectively. Finally, in out-of-order

execution, a hardware instruction scheduler may be able

to use more accurate run-time co-location information to

reorder instructions to minimize thread migrations.
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