Memory Access Scheduling
to Reduce Thread Migrations

Sana Damani

Prithayan Barua

Vivek Sarkar

Georgia Institute of Technology, USA Georgia Institute of Technology, USA Georgia Institute of Technology, USA

sdamani@gatech.edu

Abstract

It has been widely observed that data movement is emerg-
ing as the primary bottleneck to scalability and energy ef-
ficiency in future hardware, especially for applications and
algorithms that are not cache-friendly and achieve below
1% of peak performance on today’s systems. The idea of
“moving compute to data” has been suggested as one ap-
proach to address this challenge. While there are approaches
that can achieve this migration in software, hardware sup-
port is a promising direction from the perspectives of lower
overheads and programmer productivity. Migratory thread
architectures migrate lightweight hardware thread contexts
to the location of the data instead of transferring data to the
requesting processor. However, while transporting thread
contexts is cheaper than moving data, thread migrations still
incur energy and bandwidth overheads and can be particu-
larly expensive if threads frequently migrate in a ping-pong
manner between processors due to poor locality of access.

In this paper, we propose Memory Access Scheduling, a
new compiler optimization that aims to reduce the number
of overall thread migrations when executing a program on
migratory thread architectures. Our experiments show per-
formance improvements with a geometric mean speedup
of 1.23x for a set of 7 explicitly-parallelized kernels, and
of 1.10x for a set of 15 automatically-parallelized kernels.
We believe that memory access scheduling will also be an
important optimization for other locality-centric architec-
tures that benefit from software thread migrations, such as
multi-threaded NUMA architectures.

CCS Concepts: - Computer systems organization — Dis-
tributed architectures; Multicore architectures.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CC 22, April 02-03, 2022, Seoul, South Korea

© 2022 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-9183-2/22/04...$15.00
https://doi.org/10.1145/3497776.3517768

prithayan@gatech.edu

144

vsarkar@gatech.edu

Keywords: Compilers, Emu Architecture, Instruction Sched-
uling, Integer Linear Programming (ILP), Sequential Order-
ing Problem, Dataflow Analysis, Thread Migration

ACM Reference Format:

Sana Damani, Prithayan Barua, and Vivek Sarkar. 2022. Memory
Access Scheduling to Reduce Thread Migrations. In Proceedings of
the 31st ACM SIGPLAN International Conference on Compiler Con-
struction (CC °22), April 02—03, 2022, Seoul, South Korea. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3497776.3517768

1 Introduction

Migratory thread architectures such as Emu [4] reduce mem-
ory bandwidth, latency, and energy utilization by migrating
lightweight thread contexts to lightweight near-memory pro-
cessors (called "nodelets") instead of transferring blocks of
data to a requesting processor. When a thread encounters a
memory read, the hardware checks if the data is available on
the current nodelet. If the data is not on the current nodelet,
the hardware migrates the thread to the nodelet that holds
the requested address. This approach works well for data-
intensive applications with weak locality [13], such as graph
analysis, data analytics, and machine learning. However, in
some cases, a thread may request data from nodelets in an
alternating manner, resulting in a thread migration on every
access. To study the cost of thread migration, we wrote two
microbenchmarks with a single thread that reads data from
(1) a replicated array, and (2) a distributed array. We found
that the first microbenchmark with 0 migrations ran 15.7x
faster on an Emu processor than the second microbench-
mark with 100,000 migrations. The cost per-migration is
approximately 272 clock cycles, which can be a significant
overhead if incurred for a large number of read operations.

// allocate arrays

long xvalues mw_mallocldlong(N);
long *x mw_mallocidlong(N);

long xcolind mw_mallocldlong(N);

for (i =

sum

1
0;
for (j = rowptr[i] to rowptr[i+1]) {

sum += values[j] * x[colind[jl];

to N) {

O 0 N N R W =

=
(=]

}

y[i]
}

Listing 1. Sparse Matrix Vector Multiply

—_
—_

sum;

Juy
Do

https://doi.org/10.1145/3497776.3517768
https://doi.org/10.1145/3497776.3517768

CC *22, April 02-03, 2022, Seoul, South Korea

L1 | Nodelet 0 | [Nodelet 1] [Nodelet 2] [Nodelet 3]
LD idx, colindii] | Nude;e:(; _ o Il\;c_délet 1] [Nodelet 2] [Nodelet 3]
L0, e (oiders] [odoms] [vowoez] (NG
Wovaesg] [owo] [NEMEE [vwes] [Nowerd
MUL product, a,b [Nodelet0 | | Nodelet 1 [Nodelet 2] [Nodelet 3]
ADDc, ¢, product [Nodelet0 | [Nodelet 1 [Nodelet 2] [Nodelet 3]
(a) Baseline: 3 migrations per iteration
w1 [Nodelet 0 | [Nodelet 1] [Nodelet 2] [Nodelet 3]
LD idx, colindii] | Node?e:(; _ o Il;o-dilet 1] [Nodelet 2| [Nodelet 3]
LD b, values(j] [Nodelet0 | |Nod?Iet1| [Nodelet 2] [Nodelet 3]
LD a, x[idx] [Nodelet 0 | | Nod;e_t I] _____ | ;\l;d_el-et_ z_| o _N-o;ilet 3
MUL product, a, b [Nodelet 1 [Nodelet 2] [Nodelet 3]
ADD ¢, ¢, product [Nodelet0 | [Nodelet 1 [Nodelet 2] [Nodelet 3]

(b) Memory Access Scheduling: 2 migrations per iteration

Figure 1. Thread migrations in SpMV

In this paper, we introduce a new compiler optimization
for migratory thread architectures called Memory Access
Scheduling. Our optimization statically identifies co-located
memory accesses and groups them together to reduce the
number of thread migrations.

We use the sparse matrix-vector multiplication (SpMV)
code from Listing 1 as a running example. The function
mw_mallocldlong distributes arrays across nodelets in a
round-robin manner starting from Nodelet 0 (see Figure 3).
Hence, values[j] and colind[j] are always on the same nodelet.
The location of x[colind[j]] cannot be statically determined,
so we conservatively assume that it will result in a migration.
Data layouts are further described in Section 2.3.

Table 1. SPMV codegen with Memory Access Scheduling

’ (a) Baseline ‘ (b) Optimized ‘

S/lle(frf”f tg noldi;lde?(])‘ // migrate to nodelet 0
¢ = Jead <o J/’ S1: RO = load colind[j];
// migrate to nodelet 3 S3: R2 = load val (i1
S2: R1 = load x[RO]; P oRe = foad vatuesly
// iorate t delet 0 // migrate to nodelet 3
migrate to-modetel 0| oy Ri - load x[R0];
S3: R2 = load values[j];
S4: R3 = mul R2, R1;
S4: R3 = mul R2, R1; S5 - add 3
S5: sum = add sum, R3; Posum o= a sum, ’

Table 1(a) shows the code generated for line 9 and Figure
1(a) illustrates the execution of a single iteration of the SpMV
loop. We observe that in the base case, there are (at most)
three migrations in each iteration of the inner loop resulting
in 3N? total migrations. Table 1(b) shows the code gener-
ated after memory access scheduling, which groups together
accesses from the same nodelet as much as possible, before

145

Sana Damani, Prithayan Barua, and Vivek Sarkar

executing a migration-inducing instruction. The modified
schedule has a maximum of two migrations per iteration of
the inner loop resulting in 2N? total migrations, a reduction
of 33% (see Figure 1(b)). Simulator studies show that total
migrations for the SpMV application reduced from 2.2M to
1.3M migrations with the modified schedule. The remain-
der of this paper describes how our scheduler identifies and
reorders co-located memory accesses.
Our contributions include:

o A novel static analysis, which tracks data layouts and
identifies co-located memory accesses.

e Formalization of memory access scheduling as a se-
quential ordering problem.

o An ILP-based scheduler that reorders instructions to
minimize the number of thread migrations.

e An alternate heuristic-based greedy scheduler with
lower compile-time overhead relative to the ILP-based
scheduler.

e An implementation of our approach in LLVM and
experimental results that measure the impact of our
schedulers in terms of thread migrations and perfor-
mance improvement on Emu hardware.

2 Background
2.1 Emu Architecture

The basic unit of processing in the Emu architecture is a
nodelet (shown in Figure 2a) [4]. A nodelet consists of mul-
tiple gossamer cores, general-purpose pipelined processors
that execute threads, a nodelet queue manager that handles
thread scheduling and migration, a memory front-end that
handles memory transactions, and a portion of the global
address space. A group of 8 nodelets along with a migration
engine, a cross-bar that migrates threads from the source
nodelet to destination nodelet, and a stationary core forms
a node (see Figure 2b). An Emu system may have multiple
connected nodes. The architecture has no memory hierarchy
and all accesses reference a global memory address space.
When a thread running on a nodelet executes a memory
fetch instruction, the hardware first checks if the requested
data is present on the current nodelet. If not, the hardware
migrates the thread context to the nodelet that holds the re-
quested data. Hence, threads migrate automatically without
programmer intervention. A thread context is compact, con-
sisting of a thread status word and address and data registers
[4]. The program itself is maintained in replicated memory
and can be accessed from any nodelet, and does not need
to be transferred with the thread context. Hence, thread mi-
gration on the Emu is a cheap operation, but as described
in section 1, it can still become a performance bottleneck.

Memory Access Scheduling to Reduce Thread Migrations

Gossamer
Core

% Gossamer
&
Narrow S Core Nodelet
<
Channel — = Queue
DRAM S Manager
= Gossamer
= Core
[=%
Gossamer

Core

NODELET ARCHITECTURE

(a) Emu Nodelet

Memory | Memory | Memory | Memory | Memory | Memory
T I I I I I
Nodelet 2 Nodelet 3 Nodelet 4 Nodelet 5 | Nodelet 6 Nodelet 7

| Memory | Memory

Nodelet 0

Nodelet 1 |

_‘

Stationary Core Migration Engine |

EMU NODE

(b) Emu Node

Figure 2. Emu Architecture [4]

2.2 Emu Programming Model

Emu uses the Cilk programming model with the following
extensions to C [9]:

e cilk_spawn creates a new child thread that can execute
in parallel with the parent. A parent can optionally
spawn a child on a remote nodelet with a migrate hint.

e cilk_sync forces the parent to wait for all its spawned
children to finish execution before proceeding.

e cilk_for spawns new threads for each iteration of a for
loop, which can execute in parallel, and then waits for
all the iterations to complete.

2.3 Data Allocation

Emu-Cilk provides the following functions for dynamic allo-
cation of data structures distributed across nodelets [6].

o mw_localmalloc(N, ptr) allocates memory of size N on
the same nodelet as ptr.

o mw_mallocrepl(N) allocates memory of size N on each
nodelet [21]. A copy of a replicated data structure can
be found on each nodelet.

o mw_mallocldlong(N) allocates a 1D array of N long ele-
ments striped across nodelets in a round-robin manner
starting at nodelet 0 (see Figure 3a).

o mw_malloc2d(B, N) allocates a 2D array of B blocks of
N elements each. The blocks are striped across nodelets
in a round-robin manner starting at nodelet 0, whereas
elements within a block are co-located on a single
nodelet (see Figure 3b for an example with B=4).

146

CC ’22, April 02-03, 2022, Seoul, South Korea

A[0] A[1] A[2] A[3]
Al4] A[5] Al6] Al7]
A[8] A[9] A[10] A[11]
(a) mw_malloc1dlong()
Alo][0] Al1][0] Al2][0] A[3][0]
Al0][1] Al1][1] Al2][1] AB][1]
Al0][2] Al1][2] Al2](2] Al3][2]

(b) mw_malloc2d()

Figure 3. Data Allocation.

2.4 Other Migratory Thread Systems

In Non-Uniform Memory-Access (NUMA) systems, the data
access latency depends on where the data is located rela-
tive to where the access is being performed. NUMA-aware
operating systems aim to co-locate data with the threads
that access them as much as possible, so as to minimize this
latency. A NUMA variant that migrates threads on remote
accesses was shown by Li et al. to be up to 2x faster than
data shuffling in past work [11].

Earlier, Rogers et al. proposed using thread migration as
an enabler for automatic parallelization of programs that use
dynamic data structures on distributed-memory multiproces-
sors, so as to handle the problem of ensuring that all thread
accesses are local when the layout is statically unknown [16].
Contemporaneously, Jenks and Gaudiot proposed the No-
madic Threads run-time system [8]. Similar to Emu threads,
a Nomadic thread transfers to the processor that contains
data that it requires instead of fetching data from the remote
processor with the goal of reducing messages and exploiting
locality of access within the target processor.

Our approach to Memory Access Scheduling should be ap-
plicable to all such migratory thread approaches, in addition
to the Emu system studied in this paper.

3 Approach

We define co-located memory accesses as accesses to ad-
dresses that are statically known to reside on the same nodelet
and would not cause a thread migration when issued con-
secutively. This includes (1) accesses to replicated memory
which never result in a migration, (2) accesses to multiple
elements of the same block of a 2D array allocated by mw mal-
loc2d(), and (3) accesses to a 1D array allocated by mw mal-
loc1dlong() with a stride that equals the number of nodelets.
Co-located memory accesses represent a different form of
locality than traditional cache-based spatial or temporal lo-
cality. Co-located accesses may not reside in the same block
of memory and may never be reused. However, grouping

CC *22, April 02-03, 2022, Seoul, South Korea

together co-located data accesses reduces thread migration.
Co-location is a symmetric relation because the order of the
memory references does not impact the result.

Our goal then is to identify co-located memory accesses
and reorder them to minimize the number of thread migra-
tions while respecting data and control dependencies. We
call this the Memory Access Scheduling problem. We pro-
pose a three-step solution to this problem. First, we identify
and propagate data layout information for each memory
access through a dataflow analysis we call Layout Analysis
described in Section 3.1. Next, we use data layout and array
index information to identify co-located memory accesses by
a process we call Stride Analysis (see Section 3.2. Finally, we
reorder instructions to minimize thread migrations by group-
ing together co-located accesses using an ILP-based (Section
3.3) and a heuristic-based instruction scheduler (Section 3.4).

3.1 Layout Analysis

The Layout Analysis pass determines how consecutive ele-
ments of an array are allocated across the nodelets. For our
analysis, we consider the following kinds of data allocation:

o Local: The array is allocated on the local memory of
the nodelet where the requesting thread is running.

e Co-located: The array is allocated on the same nodelet
as another pointer using mw_localmalloc().

o 1D: The array is striped across nodelets.

o 2D: The array is block striped across nodelets.

e Replicated: A copy of the data element resides on
each nodelet.

T

T

Local Colocated 1D 2D Replicated

— =

1

Figure 4. Lattice for layout analysis

The Layout Analysis pass is an interprocedural dataflow
analysis pass that first traverses all functions in the module
to propagate the layout of each pointer or array variable
within the function and then propagates the layouts across
functions. Algorithm 1 describes our dataflow analysis over
the lattice shown in Fig 4.

Once we know the layout of each variable based on the in-
traprocedural analysis, we propagate this information across
function calls using a flow-sensitive and context-insensitive
interprocedural analysis. At each of the call sites, if the lay-
out of the arguments in the caller function is determined by
the intraprocedural analysis, then we propagate the layout

147

Sana Damani, Prithayan Barua, and Vivek Sarkar

Algorithm 1: Intraprocedural Layout Analysis: DFA

1 Domain: {local, colocated, 1D, 2D, replicated}
2 Direction: forward
3 T = Memory layout not yet determined. This is the initial
value, i.e., the empty set {}.
4 1 = Memory layout cannot be determined. This is the
universal set.
5 Meet Operation: A on the Lattice as shown in Figure 4
6 Transfer function: given instruction
dst = Instr(opl, op2),
Layout(dst) = Layout(op1) A Layout(op2)
7 Vx
e XANT=x
e xNL1l=1
e clAc2=1,ifcl #c2

to the callee function parameters, by applying the Meet(A)
operator, Layout (param) = Layout(param) A Layout(arg).
On the other hand, if only the layout of the parameters of the
callee function is determined by the intraprocedural analysis
and the argument layout is unknown, then Layout(arg) =
Layout(param). The analysis also propagates the layout of
the return value is across the def-use chain of the result of
the call statement in the caller function. The interprocedural
analysis iterates until convergence, that is, until there are
no more updates to the layout information. Convergence
is guaranteed by the monotonicity of the transfer function.
Finally the layout analysis infers the memory layout for each
variable in the program.

3.2 Stride Analysis

Next, we use layout and array index information to de-
termine whether a pair of migration-inducing memory ac-
cesses is co-located. For our purposes, we define a migration-
inducing memory access as one that could potentially require
a thread migration. This includes memory reads and atom-
ics from non-replicated data structures. We propose Stride
Analysis, a pass that determines the distance between two
memory accesses depending on the distribution of the array
in memory and the offset into the array. Our analysis relies
on the basic assumption that the base address of an array
is on nodelet 0 in node 0. The offset from the base address,
therefore, decides the nodelet of each element.

Given two memory references, we define stride as the
relative distance between two migration-inducing memory
accesses in terms of nodelets.

e Case 1: Both accesses have a 1D layout.
Consecutive elements are located on adjacent nodelets
and striped across all nodelets in a round-robin fashion.
Hence, the stride between the two accesses is simply
the absolute difference between their offsets:

stride(Ali1], Bliz]) = |i1 — iz

e Case 2: Both accesses have a 2D layout.

Memory Access Scheduling to Reduce Thread Migrations

Consecutive rows are on adjacent nodelets so that all
elements of a row are on the same nodelet. Hence, the
stride is computed using the difference between the
row offsets and is independent of the column offset:

stride(Alir] [j1], Bli2] [j2]) = li1 — 2]
e Case 3: A has a 1D layout and B has a 2D layout.
stride(Ali1], Bliz] [j2]) = lir — iz]

e Case 4: They were allocated on the same nodelet using
mw_localmalloc().

stride(a,b) =0
e Otherwise:
stride(a, b) = unknown

Finally, we use stride information to determine if any
pair of memory references (Mj, M) is co-located. Two non-
replicated memory accesses (Mj, M,) are co-located if their
addresses are separated by some multiple of total nodelets,
ie.,

stride(My, My) = num_nodelets * k

for some k € Z.

3.3 ILP-Based Scheduler

® | .

(a) Dependence Graph
Schedule: S1, S2, S3, 54, S5
Num migrations = 2

(b) Mif ion Dy Graph
Sequential order: $1->53->52

(c) D Graph
Schedule: S1, S3, 52, 54, S5
Num migrations = 1

Figure 5. SpMV: Memory Access Scheduling as Sequential
Ordering Problem. Vertices shaded the same color are co-
located memory accesses. Uncolored vertices represent non
migration-inducing instructions. The solid arrows represent
data dependences while the dotted arrows represent aug-
mented dependences added by the ILP solver. The undirected
weighted edges illustrated by dashed lines represent the cost
of migration between nodes.

Given a directed acyclic graph G = (V, E) with a set of
nodes V, edges E that represent precedence relations be-
tween the nodes, and a distance matrix, a sequential ordering
of the nodes is a minimum length path that visits each node
exactly once and does not violate precedence constraints [5].

We represent the memory access scheduling problem as a
variation of the NP-hard sequential ordering problem [5] on

148

CC ’22, April 02-03, 2022, Seoul, South Korea

Algorithm 2: ILP Formulation

1 Parameters
e n = number of migration-inducing instructions
0,if i, j are on the same nodelet

* Distance;; = 1, otherwise

1,if j depends on i
e Dependence;j =]
0, otherwise
Decision Variables
e T;, time at which instruction i is scheduled
Objective Minimize number of migrations,
n n
22T

i=0 j=0

Tj — 1) * Distance;;

Constraints

o All instructions must be scheduled, i.e.,
Vii1<Ti<n
e Data dependences must be maintained, i.e.,
Dependencejj =1 = T; < T
e Only one instruction may be scheduled at a time, i.e.,

i#j = Ti#T;

the migratory dependence graph of a program, where nodes
represent migration-inducing memory access instructions,
directed edges represent data and control dependencies be-
tween instructions, and the distance between each pair of
nodes, I; and I, is given by the migration cost of scheduling
I; and I, consecutively:

) 0,1; and I, are co-located
Distance(I}, I,) =
1,I; and I, are non-co-located

A sequential ordering of the resultant graph, called the
Migration Dependence Graph, generates a schedule that
minimizes thread migrations and maintains data and control
dependences. Figure 5(b) shows the migration dependence
graph corresponding to the SpMV example from Listing
1. Algorithm 2 shows our proposed ILP formulation. Our
formulation has O(n?) variables and O(n?) constraints.

We now describe the overall instruction scheduling algo-
rithm to minimize migrations using the sequential ordering
problem (see Algorithm 3).

As a first step, we build a Migration Dependence Graph
with nodes representing migration-inducing instructions
and directed edges between nodes representing direct or in-
direct dependencies. Next, we use layout and stride analysis
(described in Sections 3.1 and 3.2) to determine distances
between each pair of nodes in the Migration Dependence
Graph. We then pass this Migration Dependence Graph as
an input to an ILP solver for the sequential ordering prob-
lem described in Algorithm 3. The solver returns an optimal

CC *22, April 02-03, 2022, Seoul, South Korea

ordering for the memory access instructions in the Migra-
tion Dependence Graph. To maintain the sequential ordering
generated by the solver in the final schedule, we augment
the original dependence graph of the program with false
dependencies. If instruction I; was scheduled before I, in the
sequential ordering, we add an edge from I; — I, in the Aug-
mented Dependence Graph. Finally, we perform a topological
sort on the instructions in the augmented dependence graph,
which optimally orders memory accesses while maintaining
original dependencies in the program. Figure 5(c) shows the
augmented dependence graph for SpMV generated using
the ILPScheduler() detailed in Algorithm 3. A topological
ordering of the graph in Figure 5(c) results in the optimized
schedule from 1(b).

Correctness: Our instruction scheduler does not move
instructions across sync/lock instructions. Further, the topo-
logical ordering of instructions maintains all data depen-
dences. Hence, reordering instructions within a thread does
not introduce data race conditions or affect the correctness
of the program.

Theorem. The augmented dependence graph is a DAG, i.e.,
there are no cycles in the augmented dependence graph, and
the program has a valid schedule.

Proof. We know that the original dependence graph has no
cycles. Assume that the augmented graph does contain a
cycle due to a newly added edge from node A to B. For a
cycle to exist, there must be a path from node B to A. This
path was either an actual dependence from B to A or an
augmented edge introduced by the ILP solver.

If there were a dependence from B to A in the original
dependence graph, the sequential ordering would respect
precedence and schedule B before A in the final schedule
by definition. If, on the other hand, B to A contains an aug-
mented edge, then the sequential ordering contains a cycle.
In either case, a cycle results in a contradiction. |

Algorithm 3: ILPScheduler

Input: NodeletMap, DependenceGraph

Output: Schedule of instructions
1 Dependencies < CalcMemDeps(DependenceGraph);
Distances « CalcMemDistances(NodeletMap);
3 T « SequentialOrdering(Dependencies, Distances);
AugmentDependenceGraph(T, DependenceGraph);
TopologicalSort(DependenceGraph);

)

'S

«

3.4 Heuristic Scheduler

We now describe a heuristic-based list scheduling algorithm
(algorithm 4) that uses a greedy approach to reduce the num-
ber of migrations in the program in polynomial time.

Sana Damani, Prithayan Barua, and Vivek Sarkar

Algorithm 4: Heuristic Scheduler: A list scheduler
that groups co-located memory access instructions.

Input: NodeletMap, DependenceGraph
Output: Schedule of instructions
1 current «— —1;
2 while some instructions not scheduled do
3 scheduled «— False;

// schedule non-migrating instructions

4 for inst in all instructions do

5 if inst.ready() A
(—inst.memoryAccess() V inst.nodelet = current)
then

6 schedule(inst);

7 L scheduled «— True;

// migrate to new nodelet
8 if —scheduled then
9 L current « Migrate();

(a) Dependence Graph

(b) Nodelet Grouping
Original Order: S1, S2, S3, S4, S5 Topological Sort: S1, S3, S2, S4, S5

Num Migrations = 2 Num Migrations = 1

Figure 6. SPMV: Heuristic-based Scheduling.

As a first step, we build a dependence graph for the pro-
gram where nodes represent instructions and edges repre-
sent dependencies. Next, we use layout and stride analysis
(described in Sections 3.1 and 3.2) to group memory access
instructions on the same nodelet into supernodes, thereby
forming a Dependence Supergraph. Finally, we perform a
topological sort of the dependence supergraph, which tries
to schedule all instructions from one nodelet before migrat-
ing to a new nodelet. Arithmetic instructions and remote or
replicated memory accesses do not induce migrations and
may be scheduled whenever their operands are ready. Note
that this supergraph may have cycles if none of the nodelet
groups have all instructions ready to schedule, in which case
we select a ready instruction at random.

Figure 6 shows how the instructions in our SPMV program
from Listing 1 are scheduled using the HeuristicScheduler()
detailed in algorithm 4. Once again, it can be verified that a

Memory Access Scheduling to Reduce Thread Migrations

topological ordering of the supergraph in Figure 6(b) results
in the minimal-migration schedule from 1(b).

EMU Cilk
Program

Front End
Compilation

I

Tapir/Opt

Memory Access Scheduler
<Il, 12>

Layout & Stride

Scheduler Analysis

IsCo-located

Codegen

Figure 7. Emu Cilk Compiler Stack.

4 Implementation Details

Figure 7 shows the LLVM-based compilation flow for Emu
Cilk based on the OpenCilk compiler framework [19], ex-
tended with the memory access scheduler introduced in this
paper. The Clang front-end compiler first translates the pro-
gram to LLVM IR. The next stage performs optimizations
across threads [20] before the program passes to the Emu
code generation stage, which generates the final executable.
The compiler does not have an instruction scheduler and
the code generation phase largely maintains the original
order of instructions. We implemented all the analysis and
transformation passes described in section 3 in LLVM where
array access information is still available, and at the end of
all LLVM passes to avoid reordering of instructions after
memory access scheduling.

Layout Analysis. The Layout analysis determines the
memory layout of each variable using the algorithm de-
scribed in Section 3.1. During a breadth-first traversal over
basic blocks, the intraprocedural layout analysis, a Function
Pass in LLVM, computes the data layout of each variable
based on the allocation function used. Next, it propagates
the layout information across blocks using the transfer func-
tion defined in steps 6 and 7 of Algorithm 1. Finally, the
interprocedural layout analysis pass, an LLVM Module Pass,
propagates the layout information of parameters across func-
tion calls.

We illustrate our layout analysis using Listing 2. The anal-
ysis assigns a data layout to every LLVM Value. As a first step,
we initialize the layout of all values to T (unknown). For each
call to malloc(), we set the layout of the result to one of Local,
Co-located, 1D, 2D or Replicated based on the type of malloc
function called. In Listing 2, we set the layout of pointer p to
1D on line 2, and the layout of arg2 to 2D on line 14 and Repli-
cated on line 12. LLVM inserts a ¢—node to join the values

150

CC ’22, April 02-03, 2022, Seoul, South Korea

of arg2 from lines 12 and 14. We use the meet operation at
the ¢—node to obtain Layout(arg2) = 2D A Replicated = L.
For each store instruction, we set the layout of the pointer
operand to the layout of the value operand. For all other in-
structions, the pass computes a join over all input operands
of the instruction to obtain the layout of the result.

The layout of all other pointers is still T. In the first it-
eration of the interprocedural analysis, the callee function,
init(), propagates the layout of the parameter p to the corre-
sponding argument arg1 in the caller. In the second iteration,
the caller, emuLaunch(), propagates the layouts of arg1 to
the callee’s parameter, p1 and arg2 to p2. Finally, the analysis
propagates the layout of p1 within kernel() across its def-use
chain to array (line 5). At the end of the layout analysis pass,
the layout of p,argl,pl,array is 1D and the layout of p2,arg2
is undetermined, or L.

1 void init(long x*p) {

2 *p = mw_mallocldlong(n); // p:1D

32

4 void kernel(long *pl1, long p2) { // pl:1D,p2:1L
5 long *array = pl; // array:1D

6

7 }

8 void emuLaunch() {

9 long xargl, *arg2; // argl,arg2:T

10 init(&argl); // argl:1D

11 if (flag) {

12 arg2 = mw_mallocrepl(n); // arg2:Replicated
13 } else {

14 arg2 = mw_mallociDlong(n); // arg2:1D

15 }

16 // ¢-node arg2: L

17 kernel (argl, arg2);

18 }

Listing 2. Layout Analysis: An Example

Stride Analysis. The stride analysis pass uses layout in-
formation to assign an equivalence class to each variable.
Variables in the same equivalence class are co-located, i.e.,
there is no migration between two memory accesses in
the same equivalence class. The stride analysis pass (sec-
tion 3.2) identifies canonical patterns of 1D and 2D array
accesses in the LLVM IR. The pass does a breadth-first-
traversal over all instructions and assigns an equivalence
class to each pointer variable. Every pointer is initially as-
signed a unique equivalence class. In Listing 3, lines 3 and
6 correspond to the array accesses ArraylD[index] and
ArraylD[index + k] respectively for a 1D array. If k is divis-
ible by the number of nodelets, i.e., k % num_nodelets() = 0,
then EquivalenceClass(12) = EquivalenceClass(I1), that is,
the two array accesses are on the same nodelet.

Lines 11 and 16 represent accesses Array2d[i][j1] and
Array2d[i+k][j2], where Layout (Array2D) = 2D. Since the
location of a 2D array access depends only on the row, 14 and
temp1 belong to the same equivalence class and 16 and temp2

CC *22, April 02-03, 2022, Seoul, South Korea

belong to the same equivalence class. Hence, a3 and a4 belong
to the same equivalence class if k % num_nodelets() = 0
(case 2 from section 3.2). Finally, our analysis decides that
accesses ArraylD|[index] and Array2D[i][j1] belong to the
same equivalence class if |index — i|%num_nodelets() = 0
using case 4 from section 3.2.

1 // ArraylD[index]

2 11 = ArraylD + index;
3 al = load 11;

4 // ArraylD[index + k]
5 12 = 11 + k;

6 a2 = load 12;

7 // Array2D[iJ[j1]

8 13 = Array2D + i;

9 templ = load 13;

10 14 = templ + ji1;

11 a3 = load 14;

12 // Array2D[i+k]1[j2]
13 15 = 13 + k;

14 temp2 = load 15;

15 16 = temp2 + j2;

16 a4 = load 16;

Listing 3. Stride Analysis: An Example

ILP Scheduler Pass. Once we have computed co-location
information for all LLVM values in the program, the ILP
scheduler traverses all basic blocks in a function and iden-
tifies instructions that may induce a thread migration, in-
cluding non-replicated memory loads and atomic updates.
Replicated accesses and memory stores do not induce migra-
tions and are therefore ignored by the scheduler.

Next, we build a per-basic block dependence matrix for
migration-inducing instructions by extending the LLVM de-
pendence analysis pass such that Dep;; = 1 if Instruction;
has a direct or indirect dependence on Instruction;. We fur-
ther build a per-block distance matrix where Distance;; = 1
if scheduling Instruction; after Instruction; will result in a
thread migration i.e. if the stride analysis assigned different
equivalence classes to the two instructions.

We feed the Distance and Dependence matrices to the ILP
Solver described in 2 which we implemented using IBM’s
IloCplex solver [3]. The solver returns the optimal schedule
of migration inducing memory access instructions in the
basic block so that the number of thread migrations are
minimized. We use the output of the ILP solver to build the
augmented dependence graph as described in 3.3.

Finally, we perform a topological sort on this augmented
dependence graph to generate an instruction schedule that
preserves the original dependencies and maintains the opti-
mal ordering of memory access instructions as determined
by the ILP solver.

5 Evaluation

This section describes the experimental setup and bench-
marks used, followed by a detailed analysis of the impact of

151

Sana Damani, Prithayan Barua, and Vivek Sarkar

memory access scheduling on thread migrations, speedup,
and compile time. Table 2 summarizes the Emu Chick hard-
ware setup used in our experiments. As mentioned in Sec-
tion 2.2, this hardware supports the Emu Cilk programming
model.

All benchmarks discussed below were ported to Emu Cilk.
Each benchmark was compiled with and without memory
access scheduling enabled, and profiled on the Emu simulator
v20.06 [6] to count the number of thread migrations. We also
measured the actual performance impact on real hardware to
obtain the average kernel execution time with and without
memory access scheduling over three runs.

Table 2. Hardware Setup: Emu Chick Specifications [4]

Configuration 1 Emu Node (8 Nodelets)
Memory 64 GB

Per-Thread Registers 16

Storage 1TB Solid State Disks
Compute 12 Gossamer Cores

1 Stationary Core
150 MHz
Serial RapidIO (SRIO)

Gossamer Core Clock Speed
System Interconnect

Table 3. Explicitly-parallelized kernels with sources

’ Benchmark \ Description ‘

SpMV CSR | CSR Sparse Matrix-Vector Multiply [14]
SpMV COO | COO Sparse Matrix-Vector Multiply [14]
SpMM Sparse Matrix-Matrix Multiply [26]
Jacobi Simulation of thermal transmission [12]
Array Sort Quick Sort an array of elements [10]
Matrix Sort | Sort elements in sparse matrix [10]
MRI-Q 3D MRI reconstruction [22]

Table 4. Compile Time

’ Benchmark \ Base (s) \ ILP (s) \ Heuristic (s) ‘

SpMV CSR 1.11 1.47 1.437
SpMV COO 1.141 9.647 1.39
SpMM 1.265 1.336 1.303
Jacobi 1.230 1.533 1.271
Array Sort 1.247 1.356 1.284
Matrix Sort 1.768 1.983 1.804
MRI-Q 2.244 28.893 2.282

5.1 Performance Results

Table 3 lists the 7 explicitly-parallel kernels used in our
evaluation, along with their sources. These kernels used all
three Emu Cilk primitives listed in Section 2.2: cilk_spawn,

Memory Access Scheduling to Reduce Thread Migrations

CC ’22, April 02-03, 2022, Seoul, South Korea

Migration Reduction Factor with Memory Access Scheduling

2.50
5.00 1.99 1.99
: 1.66
143 1.60 148 1.48
1.50 1.20
. 1.13
1.00 1.00 1.00 1.00 1.00
1.00
0.00
CSR SPMV COO SsPmMV SPMM JACOBI Array Sort Matrix Sort MRI-Q
M ILP Scheduler m Heuristic Scheduler
(a) Migration Reduction Factors
Speedup on Emu HW with Unrolling and Memory Access Scheduling
1
2.00 1.71 1.80 87
1.50
1.16 1.17
113 1.09 1.03 113 1.11 0.96 0.99 1.00 1.00 0.97 0.98
1.00
0.00
CSR SPMV COO0 SPMV SPMM Jacobi Array Sort Matrix Sort MRI-Q GEOMEAN

m Speedup ILP Scheduler

m Speedup Heuristic Scheduler

(b) Speedup

Figure 8. Results: Explicitly-parallelized kernels.

cilk_sync, and cilk_for. Figure 8(a) shows the migration re-
duction factor! for each of the benchmarks, measured on
the simulator for both the ILP scheduler and the heuristic
scheduler. Figure 8(b) shows the corresponding speedup on
actual hardware with a single Emu node. The baseline for
all our experiments is the Emu LLVM-based compiler, using
the default compilation flags. We see that memory access
scheduling reduces migrations by up to 1.99x based on the
simulator, and resulted in a speedup on real hardware of
up to 1.87x with a geometric mean speedup of 1.23X. (GE-
OMEAN MAX refers to the geometric mean of the maximum
speedup obtained by the ILP and heuristic schedulers, across
all benchmarks.)

We also evaluated our approach on a collection of 15
automatically-parallelized benchmarks from the Polybench
suite [15] using the standard dataset as input. Automatic
parallelization was performed using the PPCG compiler [24]
to obtain OpenMP code, which was converted to Emu Cilk
by replacing OpenMP parallel for loops by cilk_forloops. We
excluded benchmarks for which PPCG failed to parallelize
the loops. We used the loop unroll pragma to enable loop
unrolling by a factor of 2 in kernels that had an inner loop
over columns of a 2D array. The 15 benchmarks chosen were
those for which PPCG successfully generated parallel code
in our evaluation.

!The migration reduction factor is the ratio of the original number of
migrations to the number of migrations after memory access scheduling.

152

Figure 9 shows the speedup for the automatically paral-
lelized Polybench benchmarks using memory access schedul-
ing on a single node configuration of the Emu hardware. Our
results show that memory access scheduling improves run-
time by up to 1.43x for these applications with a geometric
mean of 1.10X.

5.2 Analysis

Impact of Register Pressure. Some benchmarks showed
unexpected slowdowns, or lack of improvement, with mem-
ory access scheduling enabled. Upon further investigation, a
major contributor to this anomaly was the impact of instruc-
tion reordering on register pressure, which in some cases
resulted in increased execution time due to spill related mi-
grations. Note that a register spill that is inserted between
co-located memory accesses can result in two additional mi-
grations (to the spill location and back) when there would
be none in the absence of a spill. The examples with the
largest slowdowns were [u and syr2k in Figure 9, with ILP
Scheduler speedups of 0.87x and 0.94X respectively. Looking
at the generated code, we saw a 40% and 6% increase in static
spill-related instructions after memory access scheduling
respectively. We also studied the dynamic number of spill re-
lated migrations for lu and found that the percentage of spill
related migrations increased from 2% to 40% with memory
access scheduling. For jacobi, even though the number of
migrations decreased by a large factor, the overall speedup
wasn’t as high because of an increase in the number of mem-
ory access instructions. These results show that memory

CC *22, April 02-03, 2022, Seoul, South Korea

Sana Damani, Prithayan Barua, and Vivek Sarkar

Polybench: Speedup on Emu HW with Unrolling and Memory Access Scheduling

1.50
1.40
1.261.26 1.271.27

atax

1.30
1.20

1.10 1.02
1.00+0

fdtd-2d

0.970.97

durbin

111
1.00 0.57 1%%.96
0.90
0.80
0.70
3mm adi bicg gemm

143
127 1.29
110 1.07
1.00
Ii I IO‘97

gemver

gesummv

1.271.26

0.93
0.87 I
lu mvt

1'081,06

GEOMEAN

1.011.01 1.02

II Io‘91

syrk

0.940_91

gramschmidt syr2k trisolv

W ILP Scheduler M Heuristic Scheduler

Figure 9. Polybench Speedup

Table 5. Impact of Loop Unrolling on Jacobi 2D

’ (a) Baseline:3N? migrations \ (b) Unroll:1.5N* migrations ‘

Iteration 0:
// migrate
1d alillj]; Iteration 0:
1d alil[j-11; // migrate
1d alil[j+11]; 1d alillj];
// migrate 1d alillj-11;
1d ali-11[j1; 1d a[il[j+11;
// migrate 1d alil[j+11];
1d ali+11[j1; 1d alill[j];
Iteration 1: 1d alil[j+21;
// migrate // migrate
1d alil[j+11; 1d ali-11[j1;
1d alil[j]; 1d ali-11[j+1];
1d alil[j+2]; // migrate
// migrate 1d ali+11[j1;
1d ali-11[j+1]; 1d ali+11[j+1];
// migrate
1d ali+11[j+1];

access scheduling is more effective for programs with low
register pressure or architectures with more thread registers.
It also motivates future work on integrating memory access
scheduling, instruction scheduling and register allocation,
following past work on combining instruction scheduling
with register allocation.

Impact of Loop Unrolling. To illustrate how loop un-
rolling can have an impact of memory access scheduling,
Table 5 shows the difference between memory access sched-
uling of the innermost loop of a 2D Jacobi kernel without
and with a 2X loop unrolling. The unrolled loop provides a
larger window of instructions to the scheduler which is able
to group co-located accesses across the two unrolled loop it-
erations. We see that the unrolled version has approximately
1.5N? migrations compared to the original loop for which
the memory access scheduler generated code with 3N? mi-
grations. Loop unrolling by a larger factor would allow for
grouping more co-located accesses across loop iterations,
thereby reducing the number of migrations further. For our
experiments, we empirically selected an unroll factor of 2

153

Migration Intensity

14000

12000
10000
8000
6000

Oll‘ll_

4000
2000
CSRSPMV COO SPMV SPMM JACOBI Array Sort Matrix Sort ~ MRI-Q

Figure 10. Migration Intensity

for both the baseline and optimized kernels. While a larger
unroll factor may expose more opportunity for grouping co-
located memory accesses across iterations, this increase in
opportunity comes at the cost of increased register pressure
resulting in register spills which, as discussed above, can
increase thread migrations rather than reducing them.

Heuristic scheduler vs. ILP scheduler. While we ex-
pect the ILP scheduler to generate an optimal schedule for
memory access instructions within a basic block, there are
cases where the heuristic scheduler outperforms the ILP
scheduler in practice (e.g., for CSR SPMV and gesummv)
because of accidental differences in spill instruction inter-
leaving which are not modeled by either algorithm. This also
motivates why we developed two schedulers, and recom-
mend using whichever one delivers better performance for
a given application.

Optimization Opportunity. As with other compiler op-
timizations, the impact of memory access scheduling de-
pends on the extent to which the underlying program is
bottlenecked by the overhead targeted by the optimization,
viz., thread migrations in this case. To better understand op-
timization opportunity, we computed the ratio of number of
migrations to execution time in the original program as a mi-
gration intensity metric. Figure 10 shows this metric for the
explicitly-parallelized benchmarks. The three benchmarks
with the largest migration intensity are Jacobi, SPMM and

Memory Access Scheduling to Reduce Thread Migrations

CSR SPMV. Among these, memory access scheduling showed
large speedups of 1.87X and 1.71x for SPMM and CSR SPMV
respectively. However, the improvement for Jacobi was not
as large, though still respectable at 1.13x. This is because
of an increase in spill instructions in Jacobi due to which a
large (1.48%) migration reduction factor did not result in a
proportional improvement in execution time.
Compilation Time: We evaluated the compile time im-
pact of our pass by measuring the overall compilation time
for each of the benchmarks using the base compiler, the ILP
scheduler, and the heuristic scheduler. Table 4 shows that
while the ILP scheduler increases compile time by a factor
of two for COO SPMV and a factor of seven for the MRI-Q
benchmark, the compile-time for the remaining benchmarks
is comparable to that of the baseline compiler (within 1.5x).
The heuristic scheduler has compile-time within 1.2X of the
baseline compiler for all benchmarks we studied. For larger
blocks or higher unroll factors, we expect the ILP scheduler
to take significantly more time than the heuristic scheduler.

6 Related Work

Belviranli et al. proposed algorithm-level optimizations using
improved thread creation strategies and better data distribu-
tion at the program level to reduce thread migrations on the
Emu architecture [1]. Rolinger et al. addressed the problem
of thread migrations and load balancing in SpMV by opti-
mizing data layouts to allocate data blocks across nodelets,
so that memory access latency is reduced [17] [18]. Hein et
al. studied the impact of replication, remote writes, and data
layout transformations on reducing thread migrations [7].
Page proposed a prefiltering mechanism to avoid redundant
migrations [13]. These approaches rely on changing the al-
gorithm or data layout. On the other hand, our approach
automatically reorders memory accesses and can therefore
automatically reduce migrations across applications and can
handle multiple access patterns on the same data structures.

Another data layout optimization to reduce thread migra-
tions in bitonic sort was proposed by Velusamy et al. [23].
They use a dynamic data remapping strategy instead of a
static data layout to avoid remote memory accesses in their
work. However, this run-time remapping operation has an
associated runtime cost that memory access scheduling does
not incur. Chatarasi and Sarkar used traditional compiler
loop transformations to increase memory access locality,
such as loop fusion, to reduce thread migrations in graph ap-
plications on the Emu architecture [2]. We believe that such
loop transformations may also expose more opportunity for
memory access scheduling.

7 Conclusions

Near memory and distributed processors pose new chal-
lenges for code generation. In particular, we find that thread

154

CC ’22, April 02-03, 2022, Seoul, South Korea

migrations often become a performance bottleneck for irreg-
ular programs with weak locality of access. We propose a new
instruction scheduling approach that aims at minimizing re-
dundant thread migrations by grouping together co-located
memory accesses within the program. Unlike prior work,
our approach attacks the problem of redundant thread mi-
grations automatically within the compiler, without changes
to data layouts or to the algorithm. We propose both an opti-
mal ILP-based solution and an approximate greedy scheduler
with lower compile time overhead. Further, we combined
memory access scheduling with loop unrolling to increase
the scheduling window. Experimental evaluation on the Emu
hardware shows speedups of up to 1.87x with geometric
mean 1.23X for a set of explicitly-parallelized kernels and up
to 1.43X and a geometric mean of 1.10x for a set of automat-
ically parallelized kernels. Our findings suggest that kernels
bottlenecked on thread migrations and with relatively low
register pressure are ideal candidates for memory access
scheduling.

While static analysis of memory access co-location infor-
mation sufficed for the benchmarks studied, other programs
may benefit from run-time information regarding how of-
ten two accesses are co-located. Alternatively, multi-version
compilation may help in cases where static information does
not accurately determine co-location information. Further,
any improvements to dependence analysis and alias anal-
ysis will also increase the accuracy of our static analysis
pass. Traditional improvements to instruction scheduling,
including global scheduling and the introduction of a post-
register allocation scheduling pass may improve the overall
performance of memory access scheduling by increasing the
size of the scheduling window or by reducing the impact of
spill-related migrations, respectively. Finally, in out-of-order
execution, a hardware instruction scheduler may be able
to use more accurate run-time co-location information to
reorder instructions to minimize thread migrations.

Acknowledgements

This material is based upon work supported by the National
Science Foundation under Grant No. 1822919. We want to
thank Tim Dysart and Shannon Kuntz at Lucata for their
guidance with the Emu Cilk compiler and simulator and
Brian Page and Jeffrey Young for their support with the Emu
hardware. We would also like to thank Prasanth Chatarasi
for his input on this work. This research was supported in
part through research infrastructure and services provided
by the Rogues Gallery testbed [25] hosted by the Center
for Research into Novel Computing Hierarchies (CRNCH)
at Georgia Tech. The Rogues Gallery testbed is primarily
supported by the National Science Foundation (NSF) under
Grant No. 2016701. This research was also funded in part by
the NVIDIA Graduate Fellowship.

CC *22, April 02-03, 2022, Seoul, South Korea

References

[1] M. E.Belviranli, S. Lee, and J. S. Vetter. 2018. Designing Algorithms
for the EMU Migrating-threads-based Architecture. In 2018 IEEE High
Performance extreme Computing Conference (HPEC). https://doi.org/
10.1109/HPEC.2018.8547571
Prasanth Chatarasi and Vivek Sarkar. 2018. A Preliminary Study of
Compiler Transformations for Graph Applications on the Emu System.
In Proceedings of the Workshop on Memory Centric High Performance
Computing (Dallas, TX, USA) (MCHPC’18). Association for Comput-
ing Machinery, New York, NY, USA, 37-44. https://doi.org/10.1145/
3286475.3286481
International Business Machines Corporation. [n.d.]. V12.10.0: User’s
Manual for CPLEX. ([n.d.]).
T. Dysart, P. Kogge, M. Deneroff, E. Bovell, P. Briggs, J. Brockman, K.
Jacobsen, Y. Juan, S. Kuntz, R. Lethin, J. McMahon, C. Pawar, M. Perrigo,
S. Rucker, J. Ruttenberg, M. Ruttenberg, and S. Stein. 2016. Highly
Scalable Near Memory Processing with Migrating Threads on the Emu
System Architecture. In 2016 6th Workshop on Irregular Applications:
Architecture and Algorithms (IA3). https://doi.org/10.1109/1A3.2016.007
L.F. Escudero. 1988. An inexact algorithm for the sequential ordering
problem. European Journal of Operational Research (1988). https:
//doi.org/10.1016/0377-2217(88)90333-5
E. Hein, T. Conte, J. Young, S. Eswar, J. Li, P. Lavin, R. Vuduc, and J.
Riedy. 2018. An Initial Characterization of the Emu Chick. In 2018 IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). https://doi.org/10.1109/IPDPSW.2018.00097
Eric R. Hein, Srinivas Eswar, Abdurrahman Yasar, Jiajia Li, Jeffrey S.
Young, Thomas M. Conte, Umit V. Catalyiirek, Richard Vuduc, Jason
Riedy, and Bora Ugar. 2020. Programming Strategies for Irregular
Algorithms on the Emu Chick. ACM Trans. Parallel Comput. 7, 4,
Article 25 (Oct. 2020), 25 pages. https://doi.org/10.1145/3418077
S. Jenks and J.-L. Gaudiot. 1996. Nomadic Threads: a migrating multi-
threaded approach to remote memory accesses in multiprocessors. In
Proceedings of the 1996 Conference on Parallel Architectures and Compi-
lation Technique. 2-11. https://doi.org/10.1109/PACT.1996.554028
P. M. Kogge. 2019. Multi-threading Semantics for Highly Hetero-
geneous Systems Using Mobile Threads. In 2019 International Con-
ference on High Performance Computing Simulation (HPCS). https:
//doi.org/10.1109/HPCS48598.2019.9188165
[10] Jiajia Li, Yuchen Ma, Xiaolong Wu, Ang Li, and Kevin J. Barker. 2019.
PASTA: A Parallel Sparse Tensor Algorithm Benchmark Suite. CCF
Transactions on High Performance Computing 1, 2 (8 2019). https:
//doi.org/10.1007/542514-019-00012-w
[11] Yinan Li, Ippokratis Pandis, René Miiller, Vijayshankar Raman, and
Guy M. Lohman. 2013. NUMA-aware algorithms: the case of data
shuffling. In CIDR.
[12] Rubén Gran Tejero Marcos Canales Mayo. [n.d.]. jacobi-mpi. https:
//github.com/mcanalesmayo/jacobi-mpi.
[13] Brian A. Page. [n.d.]. Scalability of Irregular Problems. Ph.D. Disserta-
tion. https://doi.org/10.7274/r0-7qfb-6m58

—
oo
—

—
w
-

—
w
[

155

Sana Damani, Prithayan Barua, and Vivek Sarkar

[14] B. A. Page and P. M. Kogge. 2020. Scalability of Sparse Matrix Dense
Vector Multiply (SpMV) on a Migrating Thread Architecture. In 2020
IEEE International Parallel and Distributed Processing Symposium Work-
shops (IPDPSW). https://doi.org/10.1109/IPDPSW50202.2020.00088
Louis-Noel Pouchet and Tomofumi Yuki. 2015. PolyBench/C 4.1.
SourceForge. Available online: http://polybench. sourceforge. net/(accessed
on 12 August 2020) (2015).

Anne Rogers, Martin C. Carlisle, John H. Reppy, and Laurie J. Hendren.
1995. Supporting Dynamic Data Structures on Distributed-Memory
Machines. ACM Trans. Program. Lang. Syst. 17, 2 (mar 1995), 233-263.
https://doi.org/10.1145/201059.201065

T. Rolinger, C. Krieger, and A. Sussman. [n.d.]. Optimizing Data
Layouts for Irregular Applications on a Migratory Thread Architecture.

In 2019 IEEE/ACM Workshop on Memory Centric High Performance
Computing (MCHPC). https://doi.org/10.1109/MCHPC49590.2019.

00009

T. B. Rolinger and C. D. Krieger. 2018. Impact of Traditional Sparse
Optimizations on a Migratory Thread Architecture. In 2018 IEEE/ACM
8th Workshop on Irregular Applications: Architectures and Algorithms
(IA3). https://doi.org/10.1109/1A3.2018.00013

Tao B Schardl, I-Ting Angelina Lee, and Charles E Leiserson. 2018. Brief
announcement: Open cilk. In Proceedings of the 30th on Symposium on
Parallelism in Algorithms and Architectures. 351-353.

Tao B. Schardl, William S. Moses, and Charles E. Leiserson. 2017. Tapir:
Embedding Fork-Join Parallelism into LLVM’s Intermediate Repre-
sentation. In Proceedings of the 22nd ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP ’17). Association
for Computing Machinery. https://doi.org/10.1145/3018743.3018758
Paul L. Springer, Thomas Schibler, Géraud Krawezik, Jack Lightholder,
and Peter M. Kogge. 2020. Machine Learning Algorithm Performance
on the Lucata Computer. In 2020 IEEE High Performance Extreme Com-
puting Conference (HPEC). https://doi.org/10.1109/HPEC43674.2020.
9286158

[22] John A. Stratton, Christopher Rodrigrues, I-Jui Sung, Nady Obeid,
Liwen Chang, Geng Liu, and Wen-Mei W. Hwu. 2012. Parboil: A
Revised Benchmark Suite for Scientific and Commercial Throughput
Computing. Technical Report IMPACT-12-01. University of Illinois at
Urbana-Champaign, Urbana.

K. Velusamy, T. B. Rolinger, and J. McMahon. 2020. Performance
Strategies for Parallel Bitonic Sort on a Migratory Thread Architecture.
In 2020 IEEE High Performance Extreme Computing Conference (HPEC).
https://doi.org/10.1109/HPEC43674.2020.9286172

Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, José Ignacio
Goémez, Christian Tenllado, and Francky Catthoor. 2013. Polyhedral
parallel code generation for CUDA. ACM Trans. Archit. Code Optim.
(2013). https://doi.org/10.1145/2400682.2400713

[25] Jeffrey S. Young, Jason Riedy, Thomas M. Conte, Vivek Sarkar, Prasanth
Chatarasi, and Sriseshan Srikanth. 2019. Experimental Insights from
the Rogues Gallery. In 2019 IEEE International Conference on Rebooting
Computing (ICRC). 1-8. https://doi.org/10.1109/ICRC.2019.8914707
Tong Zhou. [n.d.]. sparse-tiling. https://gitlab.com/tongzhou/sparse-
tiling.

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[23]

[24]

[26]

https://doi.org/10.1109/HPEC.2018.8547571
https://doi.org/10.1109/HPEC.2018.8547571
https://doi.org/10.1145/3286475.3286481
https://doi.org/10.1145/3286475.3286481
https://doi.org/10.1109/IA3.2016.007
https://doi.org/10.1016/0377-2217(88)90333-5
https://doi.org/10.1016/0377-2217(88)90333-5
https://doi.org/10.1109/IPDPSW.2018.00097
https://doi.org/10.1145/3418077
https://doi.org/10.1109/PACT.1996.554028
https://doi.org/10.1109/HPCS48598.2019.9188165
https://doi.org/10.1109/HPCS48598.2019.9188165
https://doi.org/10.1007/s42514-019-00012-w
https://doi.org/10.1007/s42514-019-00012-w
https://github.com/mcanalesmayo/jacobi-mpi
https://github.com/mcanalesmayo/jacobi-mpi
https://doi.org/10.7274/r0-7qfb-6m58
https://doi.org/10.1109/IPDPSW50202.2020.00088
https://doi.org/10.1145/201059.201065
https://doi.org/10.1109/MCHPC49590.2019.00009
https://doi.org/10.1109/MCHPC49590.2019.00009
https://doi.org/10.1109/IA3.2018.00013
https://doi.org/10.1145/3018743.3018758
https://doi.org/10.1109/HPEC43674.2020.9286158
https://doi.org/10.1109/HPEC43674.2020.9286158
https://doi.org/10.1109/HPEC43674.2020.9286172
https://doi.org/10.1145/2400682.2400713
https://doi.org/10.1109/ICRC.2019.8914707
https://gitlab.com/tongzhou/sparse-tiling
https://gitlab.com/tongzhou/sparse-tiling

	Abstract
	1 Introduction
	2 Background
	2.1 Emu Architecture
	2.2 Emu Programming Model
	2.3 Data Allocation
	2.4 Other Migratory Thread Systems

	3 Approach
	3.1 Layout Analysis
	3.2 Stride Analysis
	3.3 ILP-Based Scheduler
	3.4 Heuristic Scheduler

	4 Implementation Details
	5 Evaluation
	5.1 Performance Results
	5.2 Analysis

	6 Related Work
	7 Conclusions
	References

